Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. ...Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.展开更多
Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is ...Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.展开更多
Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel...Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.展开更多
Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching p...Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.展开更多
基金Projects(51275530,51535012) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of China
文摘Aiming at the issue of the grinding integrity of face-gear with worm wheel, the envelope mathematical model of shaper, worm wheel and face-gear is established based on theories of differential geometry and gear mesh. The judgment of completely grinding the face-gear with the avoidance of singularities is established, and the mathematical expression to show the reason why singularities appear is derived, through the research on the surface contact area and singularity rules of the worm thread surface. The disadvantage of current face-gear grinding method that only part of the working surface of the face-gear can be covered is analyzed and the influence of coefficient of judgment is studied through changing the design parameters.
基金Project(51375029)supported by the National Natural Science Foundation of ChinaProject(20091102120038)supported by Specialized Research Fund for Doctoral Program of Higher Education of China
文摘Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.
基金Project(2013CB036004) supported by National Basic Research Program(973)of ChinaProject(51378510) supported by National Natural Science Foundation of China
文摘Tunnel water inrush is one of the common geological disasters in the underground engineering construction.In order to effectively evaluate and control the occurrence of water inrush,the risk assessment model of tunnel water inrush was proposed based on improved attribute mathematical theory.The trigonometric functions were adopted to optimize the attribute mathematical theory,avoiding the influence of mutation points and linear variation zones in traditional linear measurement functions on the accuracy of the model.Based on comprehensive analysis of various factors,five parameters were selected as the evaluation indicators for the model,including tunnel head pressure,permeability coefficient of surrounding rock,crushing degree of surrounding rock,relative angle of joint plane and tunnel section size,under the principle of dimension rationality,independence,directness and quantification.The indicator classifications were determined.The links among measured data were analyzed in detail,and the objective weight of each indicator was determined by using similar weight method.Thereby the tunnel water inrush risk assessment model is established and applied in four target segments of two different tunnels in engineering.The evaluation results and the actual excavation data agree well,which indicates that the model is of high credibility and feasibility.
基金Project(20080431380)supported by the National Postdoctoral Science Foundation,China
文摘Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.