Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation m...Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.展开更多
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ...The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.展开更多
Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influ...Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet,China,oxygen generators were used to create oxygen-enriched environments,and physiological and psychological reactions of subjects were compared under different oxygen partial pressures(p_(O_(2)))and air temperatures(t_(a)).The results showed that subjects’thermal sensation,thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure.When t_(a)=17℃,the influence of oxygen partial pressure was more pronounced,compared to p_(O_(2))=16.4 kPa,the thermal sensation of subjects under p_(O_(2))=13.7 kPa decreased by 33%.The rate of subjects feeling comfortable decreased by 25%,and the mean skin temperature decreased by 0.7℃.The hypoxic environment of the plateau exacerbates human discomfort.Therefore,it is necessary to fully understand the actual thermal requirements of sojourners in Tibet,China.The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau.展开更多
Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the C...Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the CPU-intensive chunking and hashing works and the I/0 intensive disk-index access latency. However, CPU-intensive works have been vastly parallelized and speeded up by multi-core and many-core processors; the I/0 latency is likely becoming the bottleneck in data deduplication. To alleviate the challenge of I/0 latency in multi-core systems, multi-threaded deduplication (Multi-Dedup) architecture was proposed. The main idea of Multi-Dedup was using parallel deduplication threads to hide the I/0 latency. A prefix based concurrent index was designed to maintain the internal consistency of the deduplication index with low synchronization overhead. On the other hand, a collisionless cache array was also designed to preserve locality and similarity within the parallel threads. In various real-world datasets experiments, Multi-Dedup achieves 3-5 times performance improvements incorporating with locality-based ChunkStash and local-similarity based SiLo methods. In addition, Multi-Dedup has dramatically decreased the synchronization overhead and achieves 1.5-2 times performance improvements comparing to traditional lock-based synchronization methods.展开更多
The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomen...The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.展开更多
基金Project(50774094) supported by the National Natural Science Foundation of ChinaProject(2010CB630905) supported by the National Basic Research Program of China
文摘Two reagents including salicylhydroxamic acid(SHA) and tributyl phosphate(TBP) were tested as collectors either separately or together for electro-flotation of fine cassiterite(<10 μm).Subsequently,the flotation mechanism of the fine cassiterite was investigated by adsorbance determination,electrophoretic mobility measurements and Fourier transform infra-red(FT-IR) spectrum checking.Results of the flotation experiments show that with SHA as a collector,the collecting performance is remarkably impacted by the pulp pH value as the floatability of cassiterite varies sharply when the pH changes,and flotation with SHA gives distinct maximum at about pH 6.5.Additionally,the floatability of cassiterite is determined by using SHA and TBP as collectors.The range of pulp pH for good floatability is broadened in the presence of TBP as auxiliary collector,and the utilization of TBP improves the recovery of cassiterite modestly.Moreover,the optimum pH value for cassiterite flotation is associated with adsorbance.The results of FT-IR spectrum and the electrophoretic mobility measurements indicate that the adsorption interaction between the collectors and the cassiterite is dominantly a kind of chemical bonding in the form of one or two cycle chelate rings due to the coordination of carbonyl group,hydroxamate and P=O group to the metal tin atoms,where the oxygen atoms contained in carbonyl group,hydroxamate and P=O group of the polar groups have the stereo conditions to form five-membered rings.In addition,the adsorption interactions of SHA and TBP on the surfaces of cassiterite are also dominated by means of hydrogen bonds.
基金Projects(51204054,51504203)supported by the National Natural Science Foundation of ChinaProject(2016ZX05023-001)supported by the National Science and Technology Major Project of China
文摘The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively.
基金Project(U20A20311)supported by the State Key Program of National Natural Science Foundation of ChinaProject(52008329)supported by the National Natural Science Foundation of ChinaProject(2018BSHYDZZ14)supported by the Postdoctoral Research Foundation of Shaanxi Province,China。
文摘Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation.In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet,China,oxygen generators were used to create oxygen-enriched environments,and physiological and psychological reactions of subjects were compared under different oxygen partial pressures(p_(O_(2)))and air temperatures(t_(a)).The results showed that subjects’thermal sensation,thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure.When t_(a)=17℃,the influence of oxygen partial pressure was more pronounced,compared to p_(O_(2))=16.4 kPa,the thermal sensation of subjects under p_(O_(2))=13.7 kPa decreased by 33%.The rate of subjects feeling comfortable decreased by 25%,and the mean skin temperature decreased by 0.7℃.The hypoxic environment of the plateau exacerbates human discomfort.Therefore,it is necessary to fully understand the actual thermal requirements of sojourners in Tibet,China.The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau.
基金Project(IRT0725)supported by the Changjiang Innovative Group of Ministry of Education,China
文摘Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the CPU-intensive chunking and hashing works and the I/0 intensive disk-index access latency. However, CPU-intensive works have been vastly parallelized and speeded up by multi-core and many-core processors; the I/0 latency is likely becoming the bottleneck in data deduplication. To alleviate the challenge of I/0 latency in multi-core systems, multi-threaded deduplication (Multi-Dedup) architecture was proposed. The main idea of Multi-Dedup was using parallel deduplication threads to hide the I/0 latency. A prefix based concurrent index was designed to maintain the internal consistency of the deduplication index with low synchronization overhead. On the other hand, a collisionless cache array was also designed to preserve locality and similarity within the parallel threads. In various real-world datasets experiments, Multi-Dedup achieves 3-5 times performance improvements incorporating with locality-based ChunkStash and local-similarity based SiLo methods. In addition, Multi-Dedup has dramatically decreased the synchronization overhead and achieves 1.5-2 times performance improvements comparing to traditional lock-based synchronization methods.
基金Project(50150503-12)supported by National Science and Technology Major Program of the Ministry of Science and Technology of ChinaProject(2010E-2103)supported by Research on Key Technology in Tarim Oilfield Exploration and Development,China
文摘The problem of water coning into the Tarim fractured sandstone gas reservoirs becomes one of the major concerns in terms of productivity, increased operating costs and environmental effects. Water coning is a phenomenon caused by the imbalance between gravity and viscous forces around the completion interval. There are several controllable and uncontrollable parameters influencing this problem. In order to simulate the key parameters affecting the water coning phenomenon, a model was developed to represent a single well with an underlying aquifer using the fractured sandstone gas reservoir data of the A-Well in Dina gas fields.The parametric study was performed by varying six properties individually over a representative range. The results show that matrix permeability, well penetration(especially fracture permeability), vertical-to-horizontal permeability ratio, aquifer size and gas production rate have considerable effect on water coning in the fractured gas reservoirs. Thus, investigation of the effective parameters is necessary to understand the mechanism of water coning phenomenon. Simulation of the problem helps to optimize the conditions in which the breakthrough of water coning is delayed.