在三维视觉任务中,三维目标的未知旋转会给任务带来挑战,现有的部分神经网络框架对经过未知旋转后的三维目标进行识别或分割较为困难.针对上述问题,提出一种基于自监督学习方式的矢量型球面卷积网络,用于学习三维目标的旋转信息,以此来...在三维视觉任务中,三维目标的未知旋转会给任务带来挑战,现有的部分神经网络框架对经过未知旋转后的三维目标进行识别或分割较为困难.针对上述问题,提出一种基于自监督学习方式的矢量型球面卷积网络,用于学习三维目标的旋转信息,以此来提升分类和分割任务的表现.首先,对三维点云信号进行球面采样,映射到单位球上;然后,使用矢量球面卷积网络提取旋转特征,同时将随机旋转后的三维点云信号输入相同结构的矢量球面卷积网络提取旋转特征,利用自监督网络训练学习旋转信息;最后,对随机旋转的三维目标进行目标分类实验和部分分割实验.实验表明,所设计的网络在测试数据随机旋转的情况下,在ModelNet40数据集上分类准确率提升75.75%,在ShapeNet数据集上分割效果显著,交并比(Intersection over union,IoU)提升51.48%.展开更多
针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航...针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航迹成本适应度函数,以提高航迹规划效率和准确性;在灰狼优化算法(grey wolf optimization,GWO)基础上,选择使用改进的非线性收敛因子,提升算法的鲁棒性;为了更好地平衡算法的全局搜索和局部搜索能力,通过引入基于事件触发机制的灰狼个体位置更新速度来改进GWO算法的位置更新策略。仿真对比实验表明,所提出ETGWO算法在四旋翼无人机(quadrotor unmanned aerial vehicles,QUAV)飞行航迹规划方面具有更优越的性能。展开更多
针对多目标突防组网雷达系统场景,为有效提高干扰效果以及突防成功率,编队航迹规划尤为重要。因此,首先构建航迹规划模型,从飞行器自身约束、航迹安全性、机间协调以及任务完成效果4个方面出发,结合多机伴随式编队及其所处环境特点,提...针对多目标突防组网雷达系统场景,为有效提高干扰效果以及突防成功率,编队航迹规划尤为重要。因此,首先构建航迹规划模型,从飞行器自身约束、航迹安全性、机间协调以及任务完成效果4个方面出发,结合多机伴随式编队及其所处环境特点,提出较为完备的航迹规划准则,形成一个新的整体目标函数;其次,为有效描述每架飞机的机动特性以及伴飞干扰机与目标飞机间的联系,提高算法搜索能力,提出基于多球面矢量(multi-spherical vector-based,MS)方法;为进一步提高算法的探索和开发能力,提出多面球矢量逐航迹点学习混合粒子群优化(multi-spherical vector-based hybrid particle swarm optimization with track point by track point learning,TLHPSO)算法,并将两者相结合,形成基于多面球矢量的逐航迹点学习混合粒子群优化(MS-based hybrid particle swarm optimization with track point by track point learning,MS-TLHPSO)航迹规划方法;最后,构建相应仿真场景进行验证。对比结果表明,MS方法以及TLHPSO优化算法在寻优能力上具有明显优势;同时,所提算法在不同初始场景下最优解的平均值均优于其他算法,充分说明所提算法能够在保证稳定性的前提下规划具有更高可信度的编队航迹。展开更多
文摘在三维视觉任务中,三维目标的未知旋转会给任务带来挑战,现有的部分神经网络框架对经过未知旋转后的三维目标进行识别或分割较为困难.针对上述问题,提出一种基于自监督学习方式的矢量型球面卷积网络,用于学习三维目标的旋转信息,以此来提升分类和分割任务的表现.首先,对三维点云信号进行球面采样,映射到单位球上;然后,使用矢量球面卷积网络提取旋转特征,同时将随机旋转后的三维点云信号输入相同结构的矢量球面卷积网络提取旋转特征,利用自监督网络训练学习旋转信息;最后,对随机旋转的三维目标进行目标分类实验和部分分割实验.实验表明,所设计的网络在测试数据随机旋转的情况下,在ModelNet40数据集上分类准确率提升75.75%,在ShapeNet数据集上分割效果显著,交并比(Intersection over union,IoU)提升51.48%.
文摘针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航迹成本适应度函数,以提高航迹规划效率和准确性;在灰狼优化算法(grey wolf optimization,GWO)基础上,选择使用改进的非线性收敛因子,提升算法的鲁棒性;为了更好地平衡算法的全局搜索和局部搜索能力,通过引入基于事件触发机制的灰狼个体位置更新速度来改进GWO算法的位置更新策略。仿真对比实验表明,所提出ETGWO算法在四旋翼无人机(quadrotor unmanned aerial vehicles,QUAV)飞行航迹规划方面具有更优越的性能。
文摘针对多目标突防组网雷达系统场景,为有效提高干扰效果以及突防成功率,编队航迹规划尤为重要。因此,首先构建航迹规划模型,从飞行器自身约束、航迹安全性、机间协调以及任务完成效果4个方面出发,结合多机伴随式编队及其所处环境特点,提出较为完备的航迹规划准则,形成一个新的整体目标函数;其次,为有效描述每架飞机的机动特性以及伴飞干扰机与目标飞机间的联系,提高算法搜索能力,提出基于多球面矢量(multi-spherical vector-based,MS)方法;为进一步提高算法的探索和开发能力,提出多面球矢量逐航迹点学习混合粒子群优化(multi-spherical vector-based hybrid particle swarm optimization with track point by track point learning,TLHPSO)算法,并将两者相结合,形成基于多面球矢量的逐航迹点学习混合粒子群优化(MS-based hybrid particle swarm optimization with track point by track point learning,MS-TLHPSO)航迹规划方法;最后,构建相应仿真场景进行验证。对比结果表明,MS方法以及TLHPSO优化算法在寻优能力上具有明显优势;同时,所提算法在不同初始场景下最优解的平均值均优于其他算法,充分说明所提算法能够在保证稳定性的前提下规划具有更高可信度的编队航迹。