光学电流互感器具有测量精度高、结构简单、安全性高等特点,其关键组件光纤复合绝缘子承担着通信和电气绝缘的双重作用。然而,现有不同光纤植入型式的光纤复合绝缘子芯体存在相应材料、结构或工艺等缺陷,光纤与绝缘材料之间易产生界面隐...光学电流互感器具有测量精度高、结构简单、安全性高等特点,其关键组件光纤复合绝缘子承担着通信和电气绝缘的双重作用。然而,现有不同光纤植入型式的光纤复合绝缘子芯体存在相应材料、结构或工艺等缺陷,光纤与绝缘材料之间易产生界面隐患,威胁电气设备安全运行。该文提出采用低密度环氧基复合泡沫作为光纤芯体基体,植入聚乙烯型低烟无卤(low smoke zero halogen polyethylene,LSZHPE)、聚乙烯-四氟乙烯(ethylene-tetrafluoroethylene copolymer,ETFE)及裸纤3种光纤,对比分析不同类型光纤芯体物理、界面、电气等关键性能。结果表明:LSZHPE光纤体系芯体具有较优的综合性能,150 h水扩散泄漏电流低于100μA,界面击穿强度达到13.34 k V/mm,同时光纤植入后光导通损耗满足实际应用要求;ETFE光纤及裸纤体系芯体电气性能良好,但受限于材料自身特性,界面剪切强度较低,界面可靠性相对较差。该研究为光纤复合绝缘子材料选型、界面评估及结构优化提供了新思路。展开更多
文摘光学电流互感器具有测量精度高、结构简单、安全性高等特点,其关键组件光纤复合绝缘子承担着通信和电气绝缘的双重作用。然而,现有不同光纤植入型式的光纤复合绝缘子芯体存在相应材料、结构或工艺等缺陷,光纤与绝缘材料之间易产生界面隐患,威胁电气设备安全运行。该文提出采用低密度环氧基复合泡沫作为光纤芯体基体,植入聚乙烯型低烟无卤(low smoke zero halogen polyethylene,LSZHPE)、聚乙烯-四氟乙烯(ethylene-tetrafluoroethylene copolymer,ETFE)及裸纤3种光纤,对比分析不同类型光纤芯体物理、界面、电气等关键性能。结果表明:LSZHPE光纤体系芯体具有较优的综合性能,150 h水扩散泄漏电流低于100μA,界面击穿强度达到13.34 k V/mm,同时光纤植入后光导通损耗满足实际应用要求;ETFE光纤及裸纤体系芯体电气性能良好,但受限于材料自身特性,界面剪切强度较低,界面可靠性相对较差。该研究为光纤复合绝缘子材料选型、界面评估及结构优化提供了新思路。