Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are ...Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.展开更多
In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud e...In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud environment must be prepared to deal gracefully with huge data collections without compromising system performance.In this paper,we show that by using a concept of urgent data,our system can shorten the response time for most 'urgent' queries while guarantee lower bandwidth consumption.We argue that monitoring data can be treated differently.Some data capture critical system events;the arrival of these data will significantly influence the monitoring reaction speed which is called urgent data.High speed urgent data collections can help system to react in real time when facing fatal errors.A cloud environment in production,MagicCube,is used as a test bed.Extensive experiments over both real world and synthetic traces show that when using urgent data,monitoring system can lower the response latency compared with existing monitoring approaches.展开更多
基金supported by the National Nature Science Foundation of China(Grant61572188)A Project Supported by Scientif ic Research Fund of Hunan Provincial Education Department(14A047)+4 种基金the Natural Science Foundation of Fujian Province(Grant no.2014J05079)the Young and Middle-Aged Teachers Education Scientific Research Project of Fujian province(Grant nos.JA13248JA14254 and JA15368)the special scientific research funding for colleges and universities from Fujian Provincial Education Department(Grant no.JK2013043)the Research Project supported by Xiamen University of Technology(YKJ15019R)
文摘Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.
基金supported by the National Key Technology R&D Program(Grant NO. 2012BAH17F01)NSFC-NSF International Cooperation Project(Grant NO. 61361126011)
文摘In a growing number of information processing applications,data takes the form of continuous data streams rather than traditional stored databases.Monitoring systems that seek to provide monitoring services in cloud environment must be prepared to deal gracefully with huge data collections without compromising system performance.In this paper,we show that by using a concept of urgent data,our system can shorten the response time for most 'urgent' queries while guarantee lower bandwidth consumption.We argue that monitoring data can be treated differently.Some data capture critical system events;the arrival of these data will significantly influence the monitoring reaction speed which is called urgent data.High speed urgent data collections can help system to react in real time when facing fatal errors.A cloud environment in production,MagicCube,is used as a test bed.Extensive experiments over both real world and synthetic traces show that when using urgent data,monitoring system can lower the response latency compared with existing monitoring approaches.