玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建...玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。展开更多
文摘玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。