期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于密度的分布式聚类方法 被引量:14
1
作者 王岩 彭涛 +1 位作者 韩佳育 刘露 《软件学报》 EI CSCD 北大核心 2017年第11期2836-2850,共15页
聚类是数据挖掘领域中的一种重要的数据分析方法.它根据数据间的相似度,将无标注数据划分为若干聚簇.CSDP是一种基于密度的聚类算法,当数据量较大或数据维数较高时,聚类的效率相对较低.为了提高聚类算法的效率,提出了一种基于密度的分... 聚类是数据挖掘领域中的一种重要的数据分析方法.它根据数据间的相似度,将无标注数据划分为若干聚簇.CSDP是一种基于密度的聚类算法,当数据量较大或数据维数较高时,聚类的效率相对较低.为了提高聚类算法的效率,提出了一种基于密度的分布式聚类方法 MRCSDP,利用MapReduce框架对实验数据进行聚类.该方法定义了独立计算单元和独立计算块的概念.首先,将数据拆分为若干数据块,构建独立计算单元和独立计算块,在集群中分配独立计算块的任务;然后进行分布式计算,得到数据块的局部密度,将局部密度合并得到全局密度,根据全局密度计算中心值,由全局密度和中心值得到每个数据块中候选聚簇中心;最后,从候选聚簇中心选举出最终的聚簇中心.MRCSDP在充分降低时间复杂度的基础上得到较好的聚类效果.实验结果表明,分布式环境下的聚类方法MRCSDP相对于CSDP更能快速、有效地处理大规模数据,并使各节点负载均衡. 展开更多
关键词 聚类 分布式计算 MAPREDUCE 独立计算单元 独立计算块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部