基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果...基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。展开更多
应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise...应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise reduction and wavelength calibration,SNRWC)降噪技术,建立鸭、羊、猪3种原料肉及掺假羊肉的定性识别模型。结果表明:经MSC与SNRWC处理后,鸭、羊、猪3种原料肉之间及羊肉、掺假羊肉之间的主成分分析结果具有明显的聚类趋势,在此基础上建立SIMCA定性分类模型,对不同产地的37个原料肉样品种属进行定性鉴别,识别正确率达100%;对4个掺假羊肉和5个未掺假羊肉样品识别正确率也为100%。因此,拉曼光谱分析技术结合有效的数据前处理方法及化学计量学方法可对鸭、羊、猪原料肉种属及掺假羊肉进行鉴别。与常规方法相比,该检测过程快速、方便,并且无需样品前处理。展开更多
文摘基于耦合模式比较计划第6阶段(CMIP6)中的全球气候模式的模拟结果,采用考虑模式性能和独立性结合(Climate model Weighting by Independence and Performance,ClimWIP)的加权方案进行中国区域气候的多模式集合预估及不确定性研究。结果表明,ClimWIP方案在历史阶段的模拟优于等权重方案,降低了多模式模拟的气候态偏差。温度指数的未来预估不确定性较大的区域主要集中在中国北方和青藏高原,而降水指数主要集中在华北和西北地区。ClimWIP方案的预估不确定性与等权重方案相比有所降低。ClimWIP方案预估的温度指数的增温大值区主要集中在中国北方和青藏高原;降水指数在西北和青藏高原增加最为显著。全球额外0.5℃增暖时,中国区域平均的温度指数变化更强,平均高于全球0.2℃,最低温在东北部分地区的额外增温甚至是全球平均的3倍;总降水额外增加5.2%;强降水额外增加10.5%。全球增暖2℃下,中国大部分区域温度指数较当前气候态增加可能超过1.5℃(概率>50%),在中国北方和青藏高原的部分地区增温超过1.5℃的可能性更大(概率>90%);总降水,强降水和连续干日在西北和华北增加幅度有可能超过10%、25%和-5 d(概率>50%)。
文摘应用广域照射(wide area illumination,WAI)拉曼光谱技术与簇类独立软模式(soft independent modeling of class analogy,SIMCA)法,结合多元散射校正(multiplicative scatter correction,MSC)和光谱仪降噪和波长标定(spectrometer noise reduction and wavelength calibration,SNRWC)降噪技术,建立鸭、羊、猪3种原料肉及掺假羊肉的定性识别模型。结果表明:经MSC与SNRWC处理后,鸭、羊、猪3种原料肉之间及羊肉、掺假羊肉之间的主成分分析结果具有明显的聚类趋势,在此基础上建立SIMCA定性分类模型,对不同产地的37个原料肉样品种属进行定性鉴别,识别正确率达100%;对4个掺假羊肉和5个未掺假羊肉样品识别正确率也为100%。因此,拉曼光谱分析技术结合有效的数据前处理方法及化学计量学方法可对鸭、羊、猪原料肉种属及掺假羊肉进行鉴别。与常规方法相比,该检测过程快速、方便,并且无需样品前处理。