基因表达数据具有高维小样本特点,包含了大量与疾病无关的基因,对该类数据进行分析的首要步骤是特征选择.常见的特征选择方法需要有类标的数据,但样本类标获取往往比较困难.针对基因表达数据的特征选择问题,提出基于谱聚类的无监督特征...基因表达数据具有高维小样本特点,包含了大量与疾病无关的基因,对该类数据进行分析的首要步骤是特征选择.常见的特征选择方法需要有类标的数据,但样本类标获取往往比较困难.针对基因表达数据的特征选择问题,提出基于谱聚类的无监督特征选择思想FSSC(feature selection by spectral clustering).FSSC对所有特征进行谱聚类,将相似性较高的特征聚成一类,定义特征的区分度与特征独立性,以二者之积度量特征重要性,从各特征簇选取代表性特征,构造特征子集.根据使用的不同谱聚类算法,得到FSSC-SD(FSSC based on standard deviation) FSSCMD(FSSC based on mean distance)和FSSC-ST(FSSC based on self-tuning)这3种无监督特征选择算法.以SVMs(support vector machines)和KNN(K-nearest neighbours)为分类器,在10个基因表达数据集上进行实验测试.结果表明,FSSC-SD、FSSC-MD和FSSC-ST算法均能选择到具有强分类能力的特征子集.展开更多
针对基于信息增益与皮尔森相关系数的特征选择算法FSIP(feature selection based on information gain and Pearson correlation coefficient)存在的特征子集选取需要人工参与的问题,提出基于可辨识矩阵的完全自适应2D特征选择算法DFSIP...针对基于信息增益与皮尔森相关系数的特征选择算法FSIP(feature selection based on information gain and Pearson correlation coefficient)存在的特征子集选取需要人工参与的问题,提出基于可辨识矩阵的完全自适应2D特征选择算法DFSIP(discernibility based FSIP).DFSIP算法完全自适应地发现特征子集,每次选择当前特征中最重要的一个特征,并以此特征约简可辨识矩阵,剔除冗余特征,最终自适应地获得最优特征子集.依据最优特征子集构建K-ELM分类器来评价最优特征子集的类别辨识能力.在基因数据集的实验测试以及与FSIP,mRMR,LLE Score,DRJMIM,AVC,AMID算法的实验比较和统计重要性检测表明:DFSIP算法能够自动选择出辨识能力更强的特征子集,基于此特征子集的分类器具有很好的分类性能.展开更多
文摘基因表达数据具有高维小样本特点,包含了大量与疾病无关的基因,对该类数据进行分析的首要步骤是特征选择.常见的特征选择方法需要有类标的数据,但样本类标获取往往比较困难.针对基因表达数据的特征选择问题,提出基于谱聚类的无监督特征选择思想FSSC(feature selection by spectral clustering).FSSC对所有特征进行谱聚类,将相似性较高的特征聚成一类,定义特征的区分度与特征独立性,以二者之积度量特征重要性,从各特征簇选取代表性特征,构造特征子集.根据使用的不同谱聚类算法,得到FSSC-SD(FSSC based on standard deviation) FSSCMD(FSSC based on mean distance)和FSSC-ST(FSSC based on self-tuning)这3种无监督特征选择算法.以SVMs(support vector machines)和KNN(K-nearest neighbours)为分类器,在10个基因表达数据集上进行实验测试.结果表明,FSSC-SD、FSSC-MD和FSSC-ST算法均能选择到具有强分类能力的特征子集.
文摘针对基于信息增益与皮尔森相关系数的特征选择算法FSIP(feature selection based on information gain and Pearson correlation coefficient)存在的特征子集选取需要人工参与的问题,提出基于可辨识矩阵的完全自适应2D特征选择算法DFSIP(discernibility based FSIP).DFSIP算法完全自适应地发现特征子集,每次选择当前特征中最重要的一个特征,并以此特征约简可辨识矩阵,剔除冗余特征,最终自适应地获得最优特征子集.依据最优特征子集构建K-ELM分类器来评价最优特征子集的类别辨识能力.在基因数据集的实验测试以及与FSIP,mRMR,LLE Score,DRJMIM,AVC,AMID算法的实验比较和统计重要性检测表明:DFSIP算法能够自动选择出辨识能力更强的特征子集,基于此特征子集的分类器具有很好的分类性能.