期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
强化狼群等级制度的灰狼优化算法 被引量:6
1
作者 张新明 涂强 +1 位作者 康强 程金凤 《数据采集与处理》 CSCD 北大核心 2017年第5期879-889,共11页
针对灰狼优化(Grey wolf optimization,GWO)算法在处理复杂优化问题时优化精度不高,易陷于局部最优等问题,提出了一种强化狼群等级制度的灰狼优化(GWO based on strengthening the hierarchy of wolves,GWOSH)算法。该算法为灰狼个体设... 针对灰狼优化(Grey wolf optimization,GWO)算法在处理复杂优化问题时优化精度不高,易陷于局部最优等问题,提出了一种强化狼群等级制度的灰狼优化(GWO based on strengthening the hierarchy of wolves,GWOSH)算法。该算法为灰狼个体设置了跟随狩猎和自主探索两种狩猎模式,并根据自身等级情况来控制选择狼群的狩猎模式。在跟随狩猎模式中,灰狼个体以等级高于自身的灰狼的位置信息来指引自己到达最优解区域;而在自主探索模式中,灰狼个体会同时审视等级高于自身的灰狼的位置信息和自身位置信息,并基于这些信息自主判断猎物的位置,同时两种更新模式都将引入优胜劣汰选择规则来确保种群的狩猎方向。对12个基准测试函数进行优化的结果表明:与已有的算法相比,GWOSH算法的全局搜索能力更强,更能有效避免易早熟收敛的问题,更适用于求解高维的复杂优化问题。 展开更多
关键词 智能优化算法 灰狼优化算法 社会等级制度 狩猎模式 复杂优化问题
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部