识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚...识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准.展开更多
狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫...狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫随机场(Markov Random Field,MRF)对所得图像类别概率的空间邻域关系进行描述,然后结合标号代价能量优化算法获取最终的分割结果。该方法在不需要人为指定待分割图像类别个数的同时,能较好地保证分割结果的合理性与连贯性。在MSTAR SAR数据上的实验表明了其有效性。展开更多
文摘识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准.
文摘狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫随机场(Markov Random Field,MRF)对所得图像类别概率的空间邻域关系进行描述,然后结合标号代价能量优化算法获取最终的分割结果。该方法在不需要人为指定待分割图像类别个数的同时,能较好地保证分割结果的合理性与连贯性。在MSTAR SAR数据上的实验表明了其有效性。