期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
状态概念的哲学探讨 被引量:4
1
作者 陈新 《求是学刊》 1987年第3期15-19,共5页
关键词 哲学探讨 状态参量 系统质 系统概念 热力学 认识深度 状态空间 系统科学 系统论 状态函数法
在线阅读 下载PDF
低温燃烧合成制备α-Al2O3的热力学计算
2
作者 魏坤霞 赵昆渝 《材料导报》 EI CAS CSCD 2004年第F10期332-334,共3页
燃烧合成中绝热燃烧温度是一个重要的热力学参量,它可以判断反应是否能自我维持,还可以判断产物的相结构。由于低温燃烧合成过程中,有机物的分解过程较为复杂且数据匮乏,所以其绝热燃烧温度的计算比高温燃烧合成困难。以硝酸铝和尿... 燃烧合成中绝热燃烧温度是一个重要的热力学参量,它可以判断反应是否能自我维持,还可以判断产物的相结构。由于低温燃烧合成过程中,有机物的分解过程较为复杂且数据匮乏,所以其绝热燃烧温度的计算比高温燃烧合成困难。以硝酸铝和尿素为反应物(质量比为2.5:1),采用状态函数法,对低温燃烧合成技术制备α-Al2O3微粉的反应进行了绝热燃烧温度的热力学计算。 展开更多
关键词 热力学计算 低温燃烧 合成制备 绝热燃烧温度 Α-AL2O3微粉 燃烧合成技术 热力学参量 状态函数法 合成过程 分解过程 高温燃烧 相结构 有机物 质量比 反应物 硝酸铝 产物 尿素
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
3
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部