期刊文献+
共找到653篇文章
< 1 2 33 >
每页显示 20 50 100
基于轻量级卷积神经网络的多模态生物特征识别系统设计
1
作者 刘丰华 马秋平 +1 位作者 张琪 王财勇 《科学技术与工程》 北大核心 2025年第11期4673-4681,共9页
为了解决单模态生物特征信息采集不全、易被攻击以及特定识别场景下受限等问题,构建了一个针对人脸和虹膜的多层次融合识别模型,设计并实现多模态生物特征识别系统将所提模型以模块的方式进行集成。所提模型使用轻量级卷积神经网络作为... 为了解决单模态生物特征信息采集不全、易被攻击以及特定识别场景下受限等问题,构建了一个针对人脸和虹膜的多层次融合识别模型,设计并实现多模态生物特征识别系统将所提模型以模块的方式进行集成。所提模型使用轻量级卷积神经网络作为特征提取器,在特征层利用不同模态特征之间的类内相关性,对不同模态的特征归一化后串联;在分数层使用最小值策略融合左右虹膜得分,使用平均值策略融合虹膜得分和人脸得分。从CASIA-IrisV4-Distance数据集中提取同源多模态数据集进行实验验证,特征层融合算法和分数层融合算法准确率均达到99.8%。实验表明,该系统具有鲁棒性和泛化性。 展开更多
关键词 生物特征识别 多模态融合 系统设计 轻量级卷积神经网络
在线阅读 下载PDF
基于卷积神经网络的线结构光高精度三维测量方法
2
作者 叶涛 何威燃 +2 位作者 刘国鹏 欧阳煜 王斌 《仪器仪表学报》 北大核心 2025年第2期183-195,共13页
线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精... 线结构光视觉三维测量技术因其高精度和非接触的三维重建优势而被广泛应用。然而,现有的线结构光三维测量方法在标定过程中往往面临较高的耦合性问题,且在复杂环境下,背景噪声和光照变化会严重干扰条纹的提取,导致结构光条纹中心定位精度下降,进而影响整体三维测量的精度和鲁棒性。针对上述问题,提出了一种基于卷积神经网络的鲁棒三维测量方法。首先,设计了一种创新性的残差U型块特征金字塔网络(RSU-FPN),旨在实现背景噪声的干扰抑制和结构光条纹区域中心的高精度鲁棒提取。其次,构建了一种新型的线结构光视觉传感器,并提出了一种分离式测量模型,成功将摄像机标定与光平面标定解耦,极大地提高了系统的灵活性与扩展性。通过这种解耦的标定方式,避免了传统标定方法中存在的耦合问题,使得整个测量系统更加高效且易于调整。实验结果表明,所提出的基于卷积神经网络的鲁棒三维测量方法,在复杂背景下能够实现结构光条纹中心的高精度提取,利用提取出的光条纹中心进行标定,其均方根误差分别为x方向0.005 mm、y方向0.009 mm以及z方向0.097 mm。并且,该方法在不同表面类型(如漫反射表面和光滑反射表面)上均能实现高精度的三维重建,验证了其在实际应用中的优越性和强大的鲁棒性。 展开更多
关键词 线结构光 三维测量 卷积神经网络 残差U型块特征金字塔网络 背景噪声抑制
在线阅读 下载PDF
基于一维卷积神经网络与近似熵特征融合的水电机组故障诊断 被引量:8
3
作者 孙文昊 胡志平 +3 位作者 肖志怀 邹屹东 皮俊东 马哲轩 《中国农村水利水电》 北大核心 2024年第2期199-204,共6页
针对水电机组振动信号存在非平稳和非线性,单一特征提取难以实现高精度故障诊断问题,提出了一种基于卷积神经网络和近似熵特征融合的故障诊断方法。利用卷积神经网络提取振动信号特征;EEMD与近似熵构建信号特征向量,将两种方法提取的状... 针对水电机组振动信号存在非平稳和非线性,单一特征提取难以实现高精度故障诊断问题,提出了一种基于卷积神经网络和近似熵特征融合的故障诊断方法。利用卷积神经网络提取振动信号特征;EEMD与近似熵构建信号特征向量,将两种方法提取的状态特征融合构建融合特征向量;进一步,将融合特征作为输入、故障类别作为输出,训练BP神经网络得到水电机组故障识别器,识别水电机组运行状态,即正常或具体故障类型。结合转子实验台实验数据,验证了所提方法在挖掘信号特征方面的有效性及较高的故障诊断准确率。 展开更多
关键词 特征提取 故障诊断 特征融合 近似熵 卷积神经网络
在线阅读 下载PDF
一种卷积神经网络结合特征融合的网络入侵检测方法 被引量:5
4
作者 王雪妍 温蜜 +1 位作者 李晋国 熊赟 《计算机应用与软件》 北大核心 2024年第8期359-366,共8页
为解决传统网络入侵检测方法中攻击特征过少、数据不平衡及模型收敛速度慢的问题,提出基于卷积神经网络结合特征融合的网络入侵检测方法。将流量数据转为灰度图像提取其纹理特征,再将纹理特征与流量特征进行特征融合以增加攻击特征量。... 为解决传统网络入侵检测方法中攻击特征过少、数据不平衡及模型收敛速度慢的问题,提出基于卷积神经网络结合特征融合的网络入侵检测方法。将流量数据转为灰度图像提取其纹理特征,再将纹理特征与流量特征进行特征融合以增加攻击特征量。使用Borderline-SMOTE方法对UNSW-NB15数据集进行数据平衡。运用逐层贪婪训练方法优化卷积神经网络模型提高模型的收敛速度。实验表明,该方法的性能优于其他检测方法,能将准确率最高提升到96.38%。 展开更多
关键词 入侵检测 特征融合 逐层贪婪训练 卷积神经网络 Borderline-SMOTE
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
5
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于卷积神经网络的近红外光谱与数字图像特征信息融合木材树种识别 被引量:1
6
作者 潘玺 李康 杨忠 《林业科学》 EI CAS CSCD 北大核心 2024年第12期136-145,共10页
【目的】基于卷积神经网络自动提取,探究融合木材近红外光谱与数字图像特征信息准确识别木材树种的可行性。【方法】以樟科10种木材标本为例,使用手持式近红外光谱仪和便携式扫描仪采集木材标本横切面近红外光谱和图像。创新引入递归图... 【目的】基于卷积神经网络自动提取,探究融合木材近红外光谱与数字图像特征信息准确识别木材树种的可行性。【方法】以樟科10种木材标本为例,使用手持式近红外光谱仪和便携式扫描仪采集木材标本横切面近红外光谱和图像。创新引入递归图方法,将手持式近红外光谱仪采集的一维短波长近红外光谱转换为二维图像,促进卷积神经网络从近红外光谱数据中提取判别性更强的特征,实现近红外光谱与图像在二维尺度上的融合。构建结构简单的双分支卷积神经网络模型,自动提取、融合近红外光谱与图像特征识别木材树种。【结果】与直接使用一维近红外光谱的建模方法相比,近红外光谱递归图结合卷积神经网络模型的识别性能提升1.79%~14%;与使用近红外光谱或图像单一特征识别相比,双分支卷积神经网络模型自动提取、融合近红外光谱与图像特征,对10种木材的识别性能至少提高3%,模型准确率、精度和召回率均大于99%。【结论】一维短波长近红外光谱递归图转换能够促进卷积神经网络从近红外光谱数据中提取判别性更强的特征,提高模型识别性能。双分支卷积神经网络能够充分提取并有效融合木材近红外光谱与图像特征,一定程度上可克服使用单一特征识别木材树种的不足,提高木材树种识别效果。 展开更多
关键词 木材树种识别 卷积神经网络 近红外光谱 图像 特征提取与融合
在线阅读 下载PDF
基于复数协方差卷积神经网络的运动想象脑电信号解码方法
7
作者 黄仁慧 张锐锋 +3 位作者 文晓浩 闭金杰 黄守麟 李廷会 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期43-56,共14页
深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基... 深度挖掘和利用脑电信号的特征信息,以提高运动想象的分类性能,一直是脑机接口的研究热点。考虑到脑电特征空间具有高维性且与幅值和相位密切相关,如何有效表达和同时利用脑电的幅值和相位信息已经成为一个难题。为此,本研究提出一种基于复数协方差特征的三维复值卷积神经网络。首先,构建脑电不同频率下的复数协方差矩阵特征,不仅通过复值表示将幅值和相位信息结合在一起,并且保留分类所需的多变量信息,如幅值、相位、空间位置、频率等。其次,设计针对多复数协方差特征的全复数卷积神经网络,实现运动想象任务的高性能分类。在2个公开数据集上的实验结果表明,本研究提出的方法可获得比现有前沿方法至少高出2.49和1.85个百分点的平均准确率。 展开更多
关键词 脑电信号 脑机接口 幅相信息融合 复数协方差特征 复值卷积神经网络 信息交互
在线阅读 下载PDF
基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法
8
作者 王文卿 张小乔 +2 位作者 何霁 刘涵 刘丁 《智能系统学报》 北大核心 2025年第3期649-657,共9页
多光谱图像全色锐化是遥感影像处理与解译领域的热点问题。相较于传统全色锐化方法,基于深度学习的全色锐化方法聚焦于图像深层次特征的提取,大幅提升了融合图像的质量。本文提出一种基于混合双分支卷积神经网络和图卷积神经网络的全色... 多光谱图像全色锐化是遥感影像处理与解译领域的热点问题。相较于传统全色锐化方法,基于深度学习的全色锐化方法聚焦于图像深层次特征的提取,大幅提升了融合图像的质量。本文提出一种基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法,旨在同时挖掘图像的光谱、空间与非几何结构信息,以提升融合图像空间分辨率和光谱分辨率。本方法建立在多分辨率分析融合框架的基础上,利用深度神经网络构建了特征提取、特征融合和图像重构模块。混合双分支网络模块是由2D和3D卷积神经网络构建,其中,2D卷积神经网络负责挖掘多光谱图像与全色图像的空间特征,3D卷积神经网络负责挖掘图像的光谱特征。引入了图卷积神经网络以捕捉图像图结构中节点的空间关系,从而整合非局部信息。将多光谱图像与全色图像的空间、光谱和非几何特征通过特征融合模块进行融合。将融合特征输入图像重构网络重建高质量多光谱图像。本文算法在GeoEye-1和IKONOS遥感数据上进行了实验验证,实验结果表明:与其他方法相比,本文算法在主观视觉和客观评价指标上均表现出优秀性能。 展开更多
关键词 图像融合 遥感 图像处理 深度学习 卷积神经网络 机器学习 特征提取 图像重构
在线阅读 下载PDF
基于双路射频指纹卷积神经网络与特征融合的雷达辐射源个体识别 被引量:5
9
作者 肖易寒 王博煜 +1 位作者 于祥祯 蒋伊琳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3238-3245,共8页
为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行... 为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行轴向积分双谱(AIB)和围线积分双谱(SIB)降维以构建双谱积分矩阵;最后将Raw-I/Q信号及双谱积分矩阵共同送入Dual RFF-CNN2网络并进行特征融合以实现雷达辐射源个体识别。实验结果表明,该方法具有较高的识别准确率,提取的“指纹特征”具备稳定性、鲁棒性。 展开更多
关键词 雷达辐射源个体识别 双路射频指纹卷积神经网络 特征融合 指纹特征 原始I/Q信号
在线阅读 下载PDF
高光谱结合卷积神经网络对食源性致病菌的快速识别
10
作者 周贯旭 姜红 徐雪芳 《浙江大学学报(理学版)》 北大核心 2025年第4期489-495,507,共8页
利用高光谱成像技术,采集了志贺氏菌、沙门氏菌、产气荚膜梭菌以及猪链球菌的高光谱图像和光谱数据。用MATLAB软件选取高光谱图像中的感兴趣区域(ROI),计算了该区域的平均反射率。通过Python软件采用主成分分析(PCA)方法分别对一维光谱... 利用高光谱成像技术,采集了志贺氏菌、沙门氏菌、产气荚膜梭菌以及猪链球菌的高光谱图像和光谱数据。用MATLAB软件选取高光谱图像中的感兴趣区域(ROI),计算了该区域的平均反射率。通过Python软件采用主成分分析(PCA)方法分别对一维光谱数据和高光谱图像进行降维,构建了一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)模型和二维卷积神经网络(2D-CNN)模型,将二者相结合,提出了一种快速识别食源性致病菌的特征融合CNN模型,同时对降维后的光谱数据建立随机森林(RF)、K-最近邻(KNN)及支持向量机(SVM)模型,用Precision,Recall及F1-score指标对模型性能进行评价。结果表明,1D-CNN,2D-CNN和特征融合CNN模型的分类准确率分别为89.0%,71.6%和93.3%,且特征融合CNN模型优于其他3种传统机器学习算法模型。将高光谱与CNN相结合的特征融合CNN模型可对食源性致病菌进行快速分类。 展开更多
关键词 高光谱 食源性致病菌 卷积神经网络 特征融合 快速检测
在线阅读 下载PDF
卷积神经网络与视觉Transformer联合驱动的跨层多尺度融合网络高光谱图像分类方法 被引量:8
11
作者 赵凤 耿苗苗 +2 位作者 刘汉强 张俊杰 於俊 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第5期2237-2248,共12页
高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复... 高光谱图像(HSI)分类是地球科学和遥感影像处理任务中最受关注的研究热点之一。近年来,卷积神经网络(CNN)和视觉Transformer相结合的方法,通过综合考虑局部-全局信息,在HSI分类任务中取得了成功。然而,HSI中地物具有丰富的纹理信息和复杂多样的结构,且不同地物之间存在尺度差异。现有的二者结合的方法通常对多尺度地物目标的纹理和结构信息的提取能力有限。为了克服上述局限性,该文提出CNN与视觉Transformer联合驱动的跨层多尺度融合网络HSI分类方法。首先,从结合CNN与视觉Transformer的角度出发,设计了跨层多尺度局部-全局特征提取模块分支,其主要由卷积嵌入的视觉Transformer和跨层特征融合模块构成。具体来说,卷积嵌入的视觉Transformer通过深度融合多尺度CNN与视觉Transformer实现了多尺度局部-全局特征信息的有效提取,从而增强网络对不同尺度地物的关注。进一步地,跨层特征融合模块深度聚合了不同层次的多尺度局部-全局特征信息,以综合考虑地物的浅层纹理信息和深层结构信息。其次,构建了分组多尺度卷积模块分支来挖掘HSI中密集光谱波段潜在的多尺度特征。最后,为了增强网络对HSI中局部波段细节和整体光谱信息的挖掘,设计了残差分组卷积模块对局部-全局光谱特征进行提取。Indian Pines, Houston 2013和Salinas Valley 3个HSI数据集上的实验结果证实了所提方法的有效性。 展开更多
关键词 高光谱图像分类 卷积神经网络 视觉Transformer 多尺度特征 融合网络
在线阅读 下载PDF
基于混合卷积神经网络的多特征负荷预测方法研究 被引量:5
12
作者 邹晴 李乐 +5 位作者 柳楠 李超然 曹竞元 于金骁 朱霄珣 于淼 《电网与清洁能源》 CSCD 北大核心 2024年第9期54-62,共9页
针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特... 针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特征来捕捉负荷变化的趋势,提高了对负荷突变和复杂模式的识别能力;针对多种环境特征因素对电负荷影响的问题,设计了基于2D-CNN的多特征因素学习方法,提高了模型对环境因素与负荷间复杂关系的建模能力;构建了混合网络模型,通过对1D-CNN和2D-CNN的特征信息进行深度特征融合和信息传播,实现了有效关联时空特征的综合性负荷预测方法。开展了具体算例分析研究,通过分析参数优化和融合学习对模型精度和效率的影响,并与经典模型进行对比,结果显示所提模型的均方根误差(root mean squared error,RMSE)为36.3,平均绝对误差(mean absolute error,MAE)为5.34,平均绝对百分比误差(mean absolute percentage error,MAPE)为1.02%,有效提高了负荷预测的准确性和鲁棒性。 展开更多
关键词 负荷预测 混合卷积神经网络 多尺度特征融合 特征因素 融合学习
在线阅读 下载PDF
基于神经网络架构搜索与特征融合的小样本脉搏波分类方法
13
作者 邢豫阳 陈丰 +4 位作者 毛晓波 孙智霞 逯鹏 乔云峰 窦亚美 《郑州大学学报(理学版)》 CAS 北大核心 2024年第6期54-61,共8页
基于深度学习的脉搏波分类依赖大量有标注数据,现有脉搏波带有疾病标注的数据少、标注方法不统一,导致模型准确率低、泛化能力弱。针对此问题,提出一种基于神经网络架构搜索与特征融合的小样本脉搏波分类方法。首先,在并行的双维度拆分... 基于深度学习的脉搏波分类依赖大量有标注数据,现有脉搏波带有疾病标注的数据少、标注方法不统一,导致模型准确率低、泛化能力弱。针对此问题,提出一种基于神经网络架构搜索与特征融合的小样本脉搏波分类方法。首先,在并行的双维度拆分卷积分支与因果空洞卷积分支中进行态射搜索,每次搜索结束,获取超网络分支的子网络作为候选网络进行训练评估。双维度拆分卷积分支提取脉搏波横、纵向维度时空特征,因果空洞卷积分支提取脉搏波节律特征。然后,利用特征融合方法整合分支多尺度特征。最后,依据评估指标得到最佳网络模型完成分类。实验结果表明,所提方法在两个小样本脉搏波数据集上准确率为97.04%和95.96%,F1值为97.04%和95.95%,具有较好分类效果。 展开更多
关键词 脉搏波 小样本 神经网络架构搜索 特征融合 卷积神经网络
在线阅读 下载PDF
基于多维融合特征和卷积神经网络的多任务用户短期负荷预测 被引量:18
14
作者 臧海祥 许瑞琦 +3 位作者 刘璟璇 陈玉伟 卫志农 孙国强 《电力系统自动化》 EI CSCD 北大核心 2023年第13期69-77,共9页
针对海量用户负荷预测场景下,应用单任务用户负荷预测法所导致的运行效率低以及无法学习相关任务间关联关系等问题,提出一种基于多维融合特征和卷积神经网络的多任务用户短期负荷预测方法。首先,基于聚类技术实现多任务学习中相关任务... 针对海量用户负荷预测场景下,应用单任务用户负荷预测法所导致的运行效率低以及无法学习相关任务间关联关系等问题,提出一种基于多维融合特征和卷积神经网络的多任务用户短期负荷预测方法。首先,基于聚类技术实现多任务学习中相关任务的选择;其次,为每一类用户群构建多维融合输入,合理有序容纳多个任务的特征,避免维度爆炸和信息混乱;最后,分别为每一类用户建立以卷积神经网络为共享层的多任务预测模型,学习共享特征,并行输出相应类中全部用户的负荷预测值。基于爱尔兰能源监管委员会提供的智能电表实测数据进行算例分析,结果表明,该方法在提高整体运行效率和平均预测精度方面均取得良好成效。 展开更多
关键词 海量用户 负荷预测 多任务学习 多维融合特征 卷积神经网络
在线阅读 下载PDF
基于特征金字塔卷积循环神经网络的故障诊断方法 被引量:13
15
作者 刘秀丽 徐小力 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第2期182-190,共9页
变工况、变载荷设备部件不同故障的特征在信号中所占比例和位置不固定,且包括大量不同场景下的原始振动信号的多尺度复杂性.对此,提出一种基于特征金字塔网络(FPN)的卷积循环神经网络(CRNN)滚动轴承故障诊断方法.利用卷积神经网络(CNN)... 变工况、变载荷设备部件不同故障的特征在信号中所占比例和位置不固定,且包括大量不同场景下的原始振动信号的多尺度复杂性.对此,提出一种基于特征金字塔网络(FPN)的卷积循环神经网络(CRNN)滚动轴承故障诊断方法.利用卷积神经网络(CNN)框架,并联CNN的卷积层和循环神经网络(RNN)中的长短时记忆(LSTM)层,形成新的CRNN,以充分利用CNN对空间域信息和RNN对时域信息的学习能力;在每一层中权值共享,减少网络参数;利用FPN构建全新特征图,输入一维信号和堆叠后形成的二维信号,对传感器采集的信号进行特征提取,实现故障诊断.利用行星齿轮箱进行故障试验,并进行5折交叉验证,该方法的诊断准确率平均值为99.20%,比基本神经网络模型至少高3.62%,表明该方法诊断精度高、鲁棒性强;利用凯斯西储大学轴承数据集进行验证,证明该方法具有良好的泛用性;利用t-SNE方法对模型的特征学习效果进行可视化分析,结果表明不同故障类别特征具有良好的聚类效果. 展开更多
关键词 卷积循环神经网络 特征金字塔 故障诊断 特征可视化
在线阅读 下载PDF
基于深度卷积神经网络的多特征融合的手势识别 被引量:13
16
作者 贠卫国 史其琦 王民 《液晶与显示》 CAS CSCD 北大核心 2019年第4期417-422,共6页
针对传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致手语识别率较低的问题,本文将深度卷积神经网络架构作为分类器与多特征融合算法进行结合,通过使用纹理特征结合形状特征做到有效识别。首先纹理特征通过LBP、卷积... 针对传统的分类方法由于提取的特征比较单一或者分类器结构过于简单,导致手语识别率较低的问题,本文将深度卷积神经网络架构作为分类器与多特征融合算法进行结合,通过使用纹理特征结合形状特征做到有效识别。首先纹理特征通过LBP、卷积神经网络和灰度共生矩阵方法得到,其中形状特征向量由Hu氏不变量和傅里叶级数组成。为了避免过拟合现象,使用"dropout"方法训练深度卷积神经网络。这种基于深度卷积神经网络的多特征融合的手语识别方法,在"hand"数据库中,对32种势的识别率为97.73%。相比一般的手语识别方法,此方法鲁棒性更强,并且识别率更高。 展开更多
关键词 手势识别 手势提取 特征融合 深度卷积神经网络 鲁棒性
在线阅读 下载PDF
基于多特征融合卷积神经网络的人脸表情识别 被引量:15
17
作者 王建霞 陈慧萍 +1 位作者 李佳泽 张晓明 《河北科技大学学报》 CAS 2019年第6期540-547,共8页
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行... 针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。 展开更多
关键词 计算机图像处理 面部表情识别 卷积神经网络 特征融合 特征提取 表情分类
在线阅读 下载PDF
采用多尺度自适应选择卷积神经网络的轴承故障诊断研究 被引量:4
18
作者 张玺君 尚继洋 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第2期127-135,共9页
针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征... 针对轴承故障诊断方法中传统多尺度卷积神经网络对不同尺度的特征只是简单拼接,而未考虑不同尺度的特征差异的问题,提出一种多尺度自适应选择卷积神经网络轴承故障诊断模型(MSASCNN)。通过不同大小的宽卷积筛选原始轴承振动信号中的特征,合并为初始特征;构建多尺度自适应选择卷积块,提取不同尺度的特征,利用改进的注意力机制自适应调整不同尺度的特征权重,加入残差连接,防止模型退化;通过分类器完成轴承故障诊断。在凯斯西储大学轴承数据集和XJTU-SY轴承数据集上的实验结果表明:在模型改进实验中,与没有改进注意力机制的模型相比,所提模型的轴承故障诊断准确率提升了1.98%;在不同信噪比的噪声干扰环境中,所提模型的轴承故障诊断准确率均高于93%。 展开更多
关键词 轴承故障诊断 卷积神经网络 自适应融合 注意力机制 多尺度特征
在线阅读 下载PDF
基于特征融合卷积神经网络的车型精细识别 被引量:3
19
作者 李致金 张亮 +1 位作者 武鹏 丁春健 《计算机工程与设计》 北大核心 2020年第1期226-230,共5页
为解决现有车型精细识别方法中存在识别精度低、模型参数规模大等问题,提出一种基于特征融合卷积神经网络的车型精细识别方法。设计两个独立网络(UpNet、DownNet)分别用于提取车辆正面图像的上部和下部特征,在融合网络(FusionNet)中进... 为解决现有车型精细识别方法中存在识别精度低、模型参数规模大等问题,提出一种基于特征融合卷积神经网络的车型精细识别方法。设计两个独立网络(UpNet、DownNet)分别用于提取车辆正面图像的上部和下部特征,在融合网络(FusionNet)中进行特征融合,实现车型的精细识别。相较于现有的车型精细识别方法,该方法在提高识别精度的同时,有效压缩了模型参数规模。在基准数据集CompCars下进行大量实验的结果表明,该方法的识别精度可达98.94%,模型参数大小仅为4.9 MB。 展开更多
关键词 卷积神经网络 车型精细识别 特征融合 独立网络 融合网络 深度学习
在线阅读 下载PDF
卷积神经网提取特征的红外与可见光图像融合研究
20
作者 郑晓东 郑业爽 栾国森 《激光杂志》 CAS 北大核心 2024年第5期133-138,共6页
当前红外与可见光图像融合存在一些难题,导致前红外与可见光图像精度低,误差大,而且前红外与可见光图像融合效率低,为了解决当前红外与可见光图像过程存在的问题,设计了基于卷积神经网提取特征的红外与可见光图像融合方法。首先分别采... 当前红外与可见光图像融合存在一些难题,导致前红外与可见光图像精度低,误差大,而且前红外与可见光图像融合效率低,为了解决当前红外与可见光图像过程存在的问题,设计了基于卷积神经网提取特征的红外与可见光图像融合方法。首先分别采集对象的红外图像和可见光图像,并对原始图像去噪等预处理,改善图像的质量,然后采用卷积神经网络提取红外与可见光图像融合特征,根据特征得到红外与可见光图像融合结果,最后进行了仿真实验,结果表明本方法红外与可见光图像的融合结果的融合比率提高了0.24,平均梯度值提升了0.22,图像融合质量更高。 展开更多
关键词 卷积神经网络 提取特征 融合比率 仿真测试
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部