期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
1
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
基于改进SSD网络的着舰标志识别方法 被引量:3
2
作者 吴鹏飞 石章松 +1 位作者 黄隽 傅冰 《电光与控制》 CSCD 北大核心 2022年第1期88-92,共5页
鉴于深度学习在图像识别领域的重大进展,在无人直升机自主着舰的应用背景下,针对较为复杂的着舰环境和着舰标志设计,采用单级多区域检测(SSD)网络对着舰标志进行识别。针对SSD网络对小目标识别率低的缺点,基于深度残差网络和特征金字塔... 鉴于深度学习在图像识别领域的重大进展,在无人直升机自主着舰的应用背景下,针对较为复杂的着舰环境和着舰标志设计,采用单级多区域检测(SSD)网络对着舰标志进行识别。针对SSD网络对小目标识别率低的缺点,基于深度残差网络和特征金字塔网络结构对SSD网络进行了改进,使用ResNet101代替VGG-16网络,并利用特征金字塔网络结构改进传统上采样结构,将检测网络的高层语义信息融入低层特征信息中,最后通过实验验证了改进网络的识别效果。 展开更多
关键词 着舰标志识别 SSD网络 图像识别 深度残差网络 特征金字塔网络结构
在线阅读 下载PDF
改进Faster RCNN with FPN的素布瑕疵检测的算法研究 被引量:3
3
作者 马政 生鸿飞 《纺织工程学报》 2024年第2期84-96,共13页
纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFP... 纺织行业中的布匹检测仍存在采用人工检测的情况,人工检测效果受工人主观影响较大,易发生检测效率的降低和瑕疵的漏检误检。针对这种现状,探究素布瑕疵检测的算法,改进Faster RCNNwith FPN目标检测算法。首先,为了提升Faster RCNNwithFPN对于多尺度特征的融合能力,丰富各个特征层的上下文信息,引入跨尺度特征融合模块来改进特征金字塔网络结构。其次,为了更好的利用深层特征,加入尺度内特征交互模块来处理ResNet50输出的深层特征层,丰富高级特征层的语义信息。然后,为了增强对于极端尺寸瑕疵目标的检测能力,使用K-means++聚类和遗传算法,改进预设锚框。最后,由于素布瑕疵的尺寸较小,为了平衡正负样本,采用Focal Loss,增加对于素布瑕疵的检测效果。经过实验,使用COCO指标进行评价,该改进后的网络模型与Faster RCNNwithFPN相比,在mAP_(50)、mAP_(75)和mAP_(50:95)指标上分别提升6.5%、4.4%和4.0%,平均准确率有了明显提升,可以更好地完成素布瑕疵的检测任务。 展开更多
关键词 素布瑕疵检测 更快的区域卷积神经网络 改进特征金字塔网络结构 重新设计锚框 焦点损失
在线阅读 下载PDF
基于无人机航拍的绝缘子掉串实时检测研究 被引量:8
4
作者 李登攀 任晓明 颜楠楠 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第8期994-1003,共10页
由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络... 由无人机代替人工进行电力绝缘子巡检具有重要意义,针对无人机的上位机算力和存储资源有限的问题,提出一种适用于绝缘子掉串故障检测的实时目标检测改进算法.以YOLOv5s检测网络为基础,将颈部结构中路径聚合网络替换为双向特征金字塔网络,以提升特征融合能力;使用DIoU优化损失函数,对模型进行γ系数的通道剪枝和微调,总体上提升检测网络的精度、速度和部署能力;在网络输出处进行图像增强以提升算法可用性.在特殊扩增的绝缘子故障数据集下测试,相较于原始的YOLOv5s算法,改进算法在精度平均值上提升了3.91%,速度提升了25.6%,模型体积下降了59.1%. 展开更多
关键词 无人机 绝缘子掉串 双向特征金字塔网络结构 γ系数剪枝微调 DIoU损失函数 图像增强
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部