期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
改进特征金字塔网络的小目标检测 被引量:2
1
作者 马郑凯 周林立 梁兴柱 《电光与控制》 CSCD 北大核心 2024年第12期48-54,共7页
由于小目标可视化特征少、难以定位,故许多小目标检测方法基于特征金字塔网络(FPN)进行多尺度融合丰富各特征层的信息。然而,FPN只关注特征局部相关性并且使用逐元素相加操作融合不同的特征层忽略了不同特征层感受野的不同。因此,提出... 由于小目标可视化特征少、难以定位,故许多小目标检测方法基于特征金字塔网络(FPN)进行多尺度融合丰富各特征层的信息。然而,FPN只关注特征局部相关性并且使用逐元素相加操作融合不同的特征层忽略了不同特征层感受野的不同。因此,提出增强上下文特征金字塔网络(ECFPN),设计了上下文信息增强(CIE)模块增强上下文信息,注意力引导特征融合(AGFF)模块融合高层特征图和低层特征图。实验结果表明,ECFPN在VOC2012数据集上的AP 0.5、AP S分别达到75.05%和19.48%,在NWPU VHR-10数据集上的AP 0.5、AP S分别达到93.48%和45%,具有良好的小目标检测性能。 展开更多
关键词 小目标检测 特征金字塔网络 注意力机制
在线阅读 下载PDF
用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络 被引量:2
2
作者 庞春晖 陈鹏 +6 位作者 夏懿 章军 王兵 邹岩 陈天娇 康辰瑞 梁栋 《智慧农业(中英文)》 CSCD 2024年第2期128-139,共12页
[目的/意义]传统的小麦倒伏检测方法需要人工进行田间观测和记录,这种方法存在主观、效率低、劳动强度大等问题,难以满足大规模的小麦倒伏检测的需求。基于深度学习的小麦倒伏检测技术虽已在一定程度上得到应用,但普遍局限于对小麦单一... [目的/意义]传统的小麦倒伏检测方法需要人工进行田间观测和记录,这种方法存在主观、效率低、劳动强度大等问题,难以满足大规模的小麦倒伏检测的需求。基于深度学习的小麦倒伏检测技术虽已在一定程度上得到应用,但普遍局限于对小麦单一发育阶段的倒伏识别,而倒伏可能发生在小麦生长的各个时期,不同时期倒伏特征变化复杂,这给模型特征捕捉能力带来考验。本研究旨在探索一种基于深度学习技术的多生育期小麦倒伏区域检测方法。[方法]用无人机采集小麦灌浆期、早熟期、晚熟期这三个关键生长阶段的RGB图像,通过数据增强等技术构建出多生育期小麦倒伏数据集。提出一种小麦倒伏提取模型Lodging2Former,该模型在Mask2Former的基础上加以改进,引入分层交互式特征金字塔网络(Hierarchical Interactive Feature Pyramid Network,HI-FPN),用于提高模型在复杂田间背景干扰下对于多个生长阶段小麦倒伏特征的捕捉能力。[结果和讨论]所提出的Lodg⁃ing2Former模型相较于现存的多种主流算法,如Mask R-CNN(Mask Region-Based Convolutional Neural Network)、SOLOv2(Segmenting Objects by Locations,Version 2)以及Mask2Former,在平均精度均值(mean Average Precision,mAP)上展现出显著优势。在阈值分别为0.5、0.75以及0.5~0.95的条件下,模型的mAP值分别达到了79.5%、40.2%和43.4%,相比Mask2Former模型,mAP性能提升了1.3%~4.3%。[结论]提出的HI-FPN网络可以有效利用图像中的上下文语义和细节信息,通过提取丰富的多尺度特征,增强了模型对小麦在不同生长阶段倒伏区域的检测能力,证实了HI-FPN在多生育期小麦倒伏检测中的应用潜力和价值。 展开更多
关键词 无人机 深度学习 小麦倒伏检测 特征金字塔网络 Mask2Former
在线阅读 下载PDF
面向小目标检测结合特征金字塔网络的SSD改进模型 被引量:13
3
作者 张建明 刘煊赫 +1 位作者 吴宏林 黄曼婷 《郑州大学学报(理学版)》 CAS 北大核心 2019年第3期61-66,72,共7页
针对SSD卷积神经网络模型对小目标检测精度不高的问题,提出了一种基于特征金字塔网络的SSD改进模型.特征金字塔网络可以将深层的携带有更抽象、更丰富的语义信息的卷积特征图与浅层的分辨率更高、更细节的卷积特征图进行融合.检测的过... 针对SSD卷积神经网络模型对小目标检测精度不高的问题,提出了一种基于特征金字塔网络的SSD改进模型.特征金字塔网络可以将深层的携带有更抽象、更丰富的语义信息的卷积特征图与浅层的分辨率更高、更细节的卷积特征图进行融合.检测的过程是将原始SSD网络得到的多层特征图,经改进设计的横向连接层、上采样层、融合层和预测层处理后,再通过非极大值抑制得到最终的检测结果.采用PASCALVOC2007和2012(train+val)作为训练集,PASCALVOC2007(test)测试集的mAP达到了75.8%,相比原SSD模型提高了1.5%.其中,在盆栽植物类密集小目标检测上有9.9%的提升. 展开更多
关键词 目标检测 卷积神经网络 SSD模型 特征金字塔网络 特征图融合
在线阅读 下载PDF
一种面向散乱点云语义分割的深度残差-特征金字塔网络框架 被引量:9
4
作者 彭秀平 仝其胜 +2 位作者 林洪彬 冯超 郑武 《自动化学报》 EI CAS CSCD 北大核心 2021年第12期2831-2840,共10页
针对当前基于深度学习的散乱点云语义特征提取方法通用性差以及特征提取不足导致的分割精度和可靠性差的难题,提出了一种散乱点云语义分割深度残差-特征金字塔网络框架.首先,针对当前残差网络在卷积方式上的局限性,定义一种立方体卷积运... 针对当前基于深度学习的散乱点云语义特征提取方法通用性差以及特征提取不足导致的分割精度和可靠性差的难题,提出了一种散乱点云语义分割深度残差-特征金字塔网络框架.首先,针对当前残差网络在卷积方式上的局限性,定义一种立方体卷积运算,不仅可以通过二维卷积运算实现三维表示点的高层特征的抽取,还可以解决现有的参数化卷积设计通用性差的问题;其次,将定义的立方体卷积计算与残差网络相结合,构建面向散乱点云语义分割的深度残差特征学习网络框架;进一步,将深度残差网络与特征金字塔网络相结合,实现三维表示点高层特征多尺度学习与散乱点云场景语义分割.实验结果表明,本文提出的立方体卷积运算具有良好的适用性,且本文提出的深度残差-特征金字塔网络框架在分割精度方面优于现存同类方法. 展开更多
关键词 散乱点云 语义分割 立方体卷积 残差网络 特征金字塔网络
在线阅读 下载PDF
基于特征金字塔网络的肺结节检测 被引量:6
5
作者 高智勇 黄金镇 杜程刚 《计算机应用》 CSCD 北大核心 2020年第9期2571-2576,共6页
针对计算机断层扫描(CT)影像中肺结节尺寸变化较大、尺寸小且不规则等特点导致的检测敏感度较低的问题,提出了基于特征金字塔网络(FPN)的肺结节检测方法。首先,利用FPN提取结节的多尺度特征,并强化小目标及目标边界细节的特征;其次,在FP... 针对计算机断层扫描(CT)影像中肺结节尺寸变化较大、尺寸小且不规则等特点导致的检测敏感度较低的问题,提出了基于特征金字塔网络(FPN)的肺结节检测方法。首先,利用FPN提取结节的多尺度特征,并强化小目标及目标边界细节的特征;其次,在FPN的基础上设计语义分割网络(名为掩模特征金字塔网络(Mask FPN))用于快速准确地分割提取肺实质,作为目标候选区域定位图像;并且,在FPN顶层添加反卷积层,采用多尺度预测策略改进快速区域卷积神经网络(Faster R-CNN)以提高检测性能;最后,针对肺结节数据集的正负样本不平衡问题,在区域候选网络(RPN)模块采用焦点损失函数以提高结节的检出率。所提方法在公开数据集LUNA16上进行实验,结果表明,利用FPN和反卷积层改进的新网络对结节检测效果有一定的帮助,采用焦点损失函数也有一定效果。综合多种改进,当平均每个扫描件的候选结节数为46.7时,所提方法的肺结节检测敏感度指标为95.7%,与其他卷积神经网络方法如Faster R-CNN、UNet等相比,具有较高的敏感性。所提方法能够较好地提取不同尺度上的结节特征,提高CT图像肺结节检测的敏感度,同时对于较小的结节也能有效检测,能更有效地辅助肺癌的诊断治疗。 展开更多
关键词 肺结节检测 肺实质分割 特征金字塔网络 卷积神经网络 多尺度
在线阅读 下载PDF
基于增强特征金字塔网络的场景文本检测算法 被引量:12
6
作者 邵海琳 季怡 +1 位作者 刘纯平 徐云龙 《计算机科学》 CSCD 北大核心 2022年第2期248-255,共8页
场景文本检测有助于机器理解图像内容,在智能交通、场景理解和智能导航等领域应用广泛。现有的场景文本检测算法未充分利用高层语义信息和空间信息,限制了模型对复杂背景像素的分类能力和对不同尺度的文本实例的检测和定位能力。为解决... 场景文本检测有助于机器理解图像内容,在智能交通、场景理解和智能导航等领域应用广泛。现有的场景文本检测算法未充分利用高层语义信息和空间信息,限制了模型对复杂背景像素的分类能力和对不同尺度的文本实例的检测和定位能力。为解决上述问题,提出了一种基于增强特征金字塔网络的场景文本检测算法。该算法包括比率不变特征增强(Ratio Invariant Feature Enhanced,RIFE)模块和重建空间分辨率(Rebuild Spatial Resolution,RSR)模块。RIFE模块作为残差分支,增强了网络的高层语义信息传递,提高了分类能力,降低了误报率和漏捡率。RSR模块重建多层特征分辨率,利用丰富的空间信息改进边界位置。实验结果表明,所提算法提升了在多方向文本数据集ICDAR2015、弯曲文本数据集Totaltext以及长文本数据集MSRA-TD500上的检测能力。 展开更多
关键词 场景文本检测 特征金字塔网络 语义信息 空间信息 边界位置
在线阅读 下载PDF
基于特征金字塔网络的超大尺寸图像裂缝识别检测方法 被引量:9
7
作者 舒江鹏 李俊 +2 位作者 马亥波 段元锋 赵唯坚 《土木与环境工程学报(中英文)》 CSCD 北大核心 2022年第3期29-36,共8页
基于图像分析的裂缝自动检测识别一直是桥梁结构健康检测的热点问题之一。深度学习作为裂缝检测的重要解决方法,需要大量数据支持。公开数据集提供的小尺寸裂缝图像不足以解决超大尺寸细长裂缝图像的检测问题。提出一个基于特征金字塔... 基于图像分析的裂缝自动检测识别一直是桥梁结构健康检测的热点问题之一。深度学习作为裂缝检测的重要解决方法,需要大量数据支持。公开数据集提供的小尺寸裂缝图像不足以解决超大尺寸细长裂缝图像的检测问题。提出一个基于特征金字塔深度学习网络的超大尺寸图像中细长裂缝的检测方法。通过对编码器提取的4个不同层次的特征图分别进行预测,网络能够实现对细小裂缝的高精度分割。试验使用120张大小为3264×4928像素的桥钢箱梁表面裂缝图像对特征金字塔网络进行训练、测试;并将获得的训练模型与通过双线性插值方法缩放图像至1600×2400像素和2112×3168像素两种规格生成的数据集训练后的模型进行对比。结果表明:该方法在对比测试中能够获得最高的裂缝检测交并比(IoU)为0.78,最低的Dice Loss为0.12。测试中,裂缝检测图像显示,缩放图像会导致部分裂缝信息的丢失,该方法能稳定地保留裂缝信息,并实现复杂背景下超大尺寸图像中细长裂缝的高精度自动检测。 展开更多
关键词 裂缝检测 深度学习 超大尺寸图像 特征金字塔网络
在线阅读 下载PDF
基于注意力特征金字塔网络的肺结节检测算法 被引量:4
8
作者 秦源源 张鸿 《计算机应用》 CSCD 北大核心 2023年第7期2311-2318,共8页
针对肺结节计算机辅助检测(CAD)系统中肺结节形态各异难以检测带来的敏感度低、假阳性率高的问题,提出一种基于注意力特征金字塔网络的肺结节检测算法。在第一阶段,以更加紧凑的双路径网络(DPN)为骨干网络,并结合特征金字塔网络(FPN)进... 针对肺结节计算机辅助检测(CAD)系统中肺结节形态各异难以检测带来的敏感度低、假阳性率高的问题,提出一种基于注意力特征金字塔网络的肺结节检测算法。在第一阶段,以更加紧凑的双路径网络(DPN)为骨干网络,并结合特征金字塔网络(FPN)进行多尺度预测,以获取不同层次的特征信息,同时嵌入全局注意力机制(GAM)来细化学习要强调的语义特征,并提高算法的敏感度;在第二阶段,提出一种假阳性抑制网络,以获得最终分类预测结果;在训练阶段,采用焦点损失函数和多种数据增强技术来处理数据不平衡问题。在公开数据集LUNA16(LUng Nodule Analysis 2016)上的实验结果显示:仅有第一阶段的算法的竞争性能指标(CPM)达到了0.908,而加入假阳性抑制网络后算法的CPM达到了0.933,这与经典算法基于最大强度投影(MIP)的卷积神经网络(CNN)算法相比提升了1.1个百分点;而消融实验的结果表明DPN、FPN、GAM对于提升检测敏感度是有作用的。以上证明了所提出的两阶段检测算法可以获取多尺度结节信息,提高肺结节检测的敏感度,并且降低假阳性率。 展开更多
关键词 肺结节检测 注意力机制 特征金字塔网络 假阳性抑制 卷积神经网络
在线阅读 下载PDF
基于特征金字塔网络和密集网络的肺部CT图像超分辨率重建 被引量:4
9
作者 申利华 李波 《计算机应用》 CSCD 北大核心 2023年第5期1612-1619,共8页
针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在... 针对肺部计算机断层扫描(CT)图像的超分辨率(SR)重建中需要加大对肺结节的关注度、满足重建后的特征具有客观存在性等问题,提出一种基于特征金字塔网络(FPN)和密集网络的肺部图像SR重建方法。首先,在特征提取层利用FPN提取特征;其次,在特征映射层设计基于残差网络的局部结构,再用特殊的密集网络连接此类局部结构;再次,在特征重建层利用卷积神经网络(CNN)将不同深度的卷积层逐渐降为图像大小;最后,利用残差网络融合初始低分辨率(LR)特征与重建的高分辨率(HR)特征,形成最终的SR图像。对比实验显示,FPN中2次特征融合和特征映射中5个局部结构连接的深度学习网络效果更佳。所提出的网络相较于超分辨率卷积神经网络(SRCNN)等经典网络重建SR图像的峰值信噪比(PSNR)更高,并且可以获得更好的视觉质量。 展开更多
关键词 肺部计算机断层扫描图像 超分辨率重建 特征金字塔网络 密集网络 残差网络
在线阅读 下载PDF
面向图像修复取证的U型特征金字塔网络 被引量:2
10
作者 沈万里 张玉金 胡万 《计算机应用》 CSCD 北大核心 2023年第2期545-551,共7页
图像修复是一种常见的图像篡改手段,而基于深度学习的图像修复方法能生成更复杂的结构乃至新的对象,使得图像修复取证工作更具有挑战性。因此,提出一种端到端的面向图像修复取证的U型特征金字塔网络(FPN)。首先,通过自上而下的VGG16模... 图像修复是一种常见的图像篡改手段,而基于深度学习的图像修复方法能生成更复杂的结构乃至新的对象,使得图像修复取证工作更具有挑战性。因此,提出一种端到端的面向图像修复取证的U型特征金字塔网络(FPN)。首先,通过自上而下的VGG16模块进行多尺度特征提取,并利用自下而上的特征金字塔架构对融合后的特征图进行上采样,整体流程形成U型结构;然后,结合全局和局部注意力机制凸显修复痕迹;最后,使用融合损失函数以提高修复区域的预测率。实验结果表明,所提方法在多种深度修复数据集上的平均F1分数和IoU值分别为0.7919和0.7472,与现有的基于扩散的数字图像修复定位(LDI)、基于图像块的深度修复取证方法(Patch-CNN)和基于高通全卷积神经网络(HP-FCN)方法相比,所提方法具有更好的泛化能力,且对JPEG压缩也具有较强的鲁棒性。 展开更多
关键词 数字图像取证 深度图像修复 篡改检测 特征金字塔网络 融合损失
在线阅读 下载PDF
基于深度可分离卷积和多级特征金字塔网络的行人检测 被引量:2
11
作者 姜义成 李凡 《汽车安全与节能学报》 CAS CSCD 2020年第1期94-101,共8页
为提高行人检测的准确率,提出一种基于卷积神经网络的行人检测方法。该方法以YOLOv3-tiny算法为基础,在骨干网络部分,用深度可分离卷积的网络结构代替原卷积网络结构,加深网络深度。在检测部分,提出一种改进的多级特征金字塔网络,该网络... 为提高行人检测的准确率,提出一种基于卷积神经网络的行人检测方法。该方法以YOLOv3-tiny算法为基础,在骨干网络部分,用深度可分离卷积的网络结构代替原卷积网络结构,加深网络深度。在检测部分,提出一种改进的多级特征金字塔网络,该网络由8个结构相同的使用深度可分离卷积的特征金字塔组成,特征金字塔之间串联连接,将不同金字塔得到的相同尺寸的特征进行融合,利用融合后的特征金字塔进行检测。在Caltech Pedestrian数据集上进行测试。结果表明:该方法的漏检率为57.83%,比梯度方向直方图(HOG)方法低32.53%,比基于深度学习的方法SA Fast-RCNN和MS-CNN分别低4.67%、3.21%;运行速度为34 ms/帧。因而,该方法满足了实时性要求。 展开更多
关键词 汽车主动安全 行人检测 深度可分离卷积 多级特征金字塔网络 特征融合
在线阅读 下载PDF
基于U-Net和特征金字塔网络的秸秆覆盖率计算方法 被引量:8
12
作者 马钦 万传峰 +2 位作者 卫建 汪玮韬 吴才聪 《农业机械学报》 EI CAS CSCD 北大核心 2023年第1期224-234,共11页
针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆... 针对田间秸秆覆盖分散、秸秆形态多样,细碎秸秆识别困难,传统图像识别方法易受光照、阴影等因素干扰等问题,本文以黑龙江省齐齐哈尔市龙江县为研究地点,构建田间秸秆图像数据集;对图像进行裁剪、标注后,构建了以U-Net为基础网络的秸秆检测模型。将编码阶段的网络结构换成ResNet34的前4层作为特征提取器,增加模型的复杂度,增强秸秆特征的提取;为增强秸秆边缘识别,在最高语义信息层对深层特征图使用多分支非对称空洞卷积块(Multibranch asymmetric dilated convolutional block, MADC Block)提取多尺度的图像特征;为增加细碎秸秆的检测能力,在跳跃连接阶段使用密集特征图金字塔网络(Dense feature pyramid networks, DFPN)进行低层特征图和高层特征图的信息融合,利用特征图对应秸秆图像中感受野的不同,解决秸秆形态多样的问题;为避免秸秆特征图在上采样时的无效计算,解码阶段使用快速上卷积块(Fast up-convolution block, FUC Block)进行上采样,避免秸秆特征图在上采样时的无效计算。试验表明,本文算法在车载相机采集到的秸秆图像数据集上平均交并比为84.78%,相比U-Net提高2.59个百分点,该网络对于640像素×480像素的图像平均处理时间低于3 ms,符合作业检测时的时间复杂度要求,算法在一定程度上改善了阴影区域秸秆的识别问题,提高了细碎秸秆的识别能力。 展开更多
关键词 秸秆检测 计算机视觉 非对称空洞卷积 特征金字塔网络
在线阅读 下载PDF
基于深度残差和特征金字塔网络的实时多人脸关键点定位算法 被引量:8
13
作者 谢金衡 张炎生 《计算机应用》 CSCD 北大核心 2019年第12期3659-3664,共6页
针对人脸关键点定位算法需要分为人脸区域检测与单人脸关键点定位两个步骤,导致处理时间成倍增加的情况,提出一步到位的实时且准确的多人脸关键点定位算法。该算法将人脸关键点坐标生成对应的热度图作为数据标签,利用深度残差网络完成... 针对人脸关键点定位算法需要分为人脸区域检测与单人脸关键点定位两个步骤,导致处理时间成倍增加的情况,提出一步到位的实时且准确的多人脸关键点定位算法。该算法将人脸关键点坐标生成对应的热度图作为数据标签,利用深度残差网络完成前期的图像特征提取,使用特征金字塔网络融合在不同网络深度中表征不同尺度感受野的信息特征,应用中间监督思想,级联多个预测网络由粗到精地一次性回归图中所有人脸的关键点,而无需人脸检测步骤。在保持高定位精度的同时,该算法完成一次前向传播只需要约0.007 5 s(约每秒133帧),满足了实时人脸关键点定位的要求,且在WFLW测试集中取得了6.06%的平均误差与11.70%的错误率。 展开更多
关键词 残差网络 特征金字塔网络 实时人脸关键点定位 中间监督
在线阅读 下载PDF
基于超密集特征金字塔网络的SAR图像舰船检测 被引量:10
14
作者 韩子硕 王春平 +1 位作者 付强 徐艳 《系统工程与电子技术》 EI CSCD 北大核心 2020年第10期2214-2222,共9页
针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测困难的问题,提出了一种基于超密集特征金字塔网络的检测算法。首先,利用残差神经网络提取原始图像特征,构建特征图。其次,跨尺度连接多个特征层获取超密集特征金字... 针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标检测困难的问题,提出了一种基于超密集特征金字塔网络的检测算法。首先,利用残差神经网络提取原始图像特征,构建特征图。其次,跨尺度连接多个特征层获取超密集特征金字塔,建立多尺度的高层语义特征映射,增强特征传播和重用。然后,再利用区域建议网络提取每层金字塔的候选区域输入检测网络。最后,通过融合候选区域及其周边上下文信息,将检测网络注意力集中至海域以抑制虚警,并为分类器计算置信度和边框回归提供补充信息。多组仿真实验证明,所提网络框架设定合理且检测性能优越。 展开更多
关键词 合成孔径雷达 卷积神经网络 超密集特征金字塔网络 上下文信息
在线阅读 下载PDF
基于特征金字塔网络的图像关键点检测算法研究 被引量:6
15
作者 李宝根 《计算机应用与软件》 北大核心 2021年第9期205-213,共9页
传统的图像关键点检测算法大都基于人工设计,不能适应场景变换,泛化性能较差。对此提出一种基于特征金字塔网络的图像关键点检测算法,通过融合网络中多尺度特征使得检测出的关键点具备尺度不变性,能够提取可重复的、鲁棒的关键点。为了... 传统的图像关键点检测算法大都基于人工设计,不能适应场景变换,泛化性能较差。对此提出一种基于特征金字塔网络的图像关键点检测算法,通过融合网络中多尺度特征使得检测出的关键点具备尺度不变性,能够提取可重复的、鲁棒的关键点。为了提高算法的性能,并提出一种有效的方法产生训练数据集,训练数据集包括室内和室外的各种复杂场景。在多个公开数据集上对该算法进行测试,并与其他关键点检测算法进行对比,实验结果表明,该算法所提取的关键点在可重复率上有良好的表现。 展开更多
关键词 图像关键点检测 特征金字塔网络 可重复性 深度学习
在线阅读 下载PDF
基于立体图像的多路径特征金字塔网络3D目标检测 被引量:3
16
作者 苏凯祺 阎维青 徐金东 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第8期1487-1494,共8页
3D目标检测是计算机视觉和自动驾驶中一项重要的场景理解任务。当前基于立体图像的3D目标检测方法大多没有充分考虑多个目标之间的尺度存在较大差异,从而尺度小的物体容易被忽略,导致检测精度低。针对这一问题,提出了一种基于立体图像... 3D目标检测是计算机视觉和自动驾驶中一项重要的场景理解任务。当前基于立体图像的3D目标检测方法大多没有充分考虑多个目标之间的尺度存在较大差异,从而尺度小的物体容易被忽略,导致检测精度低。针对这一问题,提出了一种基于立体图像的多路径特征金字塔网络(MpFPN)3D目标检测方法。MpFPN对特征金字塔网络进行了扩展,增加了自底向上的路径、由上至下的路径及输入特征图到输出特征图之间的连接,为联合区域提议网络提供了更高语义信息和更细粒度空间信息的多尺度特征信息。实验结果表明:在3D目标检测KITTI数据集上,无论在场景简单、中等、复杂情况下,所提方法获得的结果都优于比较方法的结果。 展开更多
关键词 3D目标检测 特征金字塔网络(FPN) 立体图像 多尺度 深度学习
在线阅读 下载PDF
基于坐标注意力和加权双向特征金字塔网络的舰载机阻拦着舰拉制状态精准识别
17
作者 李哲 杨杰 +4 位作者 张椅 王华 李亚飞 王可 徐明亮 《中国舰船研究》 2025年第4期124-133,共10页
[目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用... [目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用坐标注意力机制(CA)从空间和通道两个维度增强模型捕捉特征的能力;再通过加权双向特征金字塔网络(BiFPN)纳入可学习的权值学习不同输入特征的重要性,实现双向多尺度特征融合;然后采用C2F模块轻量化模型架构,减少参数和计算量;最后通过仿真实验将所提模型与5种基线模型进行对比。[结果]结果表明,在舰载机尾钩和阻拦着舰拉制状态的检测上,该模型综合性能均优于基线模型。[结论]该模型有助于提高尾钩及阻拦索的啮合状态检测的准确率和鲁棒性,对提高舰载机着舰作业的效率、预防潜在的人员伤害和装备损失具有重要意义。 展开更多
关键词 舰载机 阻拦装置 状态识别 双向特征金字塔网络(BiFPN) 航空母舰
在线阅读 下载PDF
基于特征金字塔网络的TFDS图像去噪算法
18
作者 陈佳伟 岳建海 +1 位作者 周航 胡准庆 《铁道学报》 2025年第9期104-118,共15页
为进一步提高深度学习方法对货车运行故障动态图像检测系统(TFDS)图像去噪效果和边缘保持性,提出一种基于特征金字塔网络的图像去噪算法。该算法构建了一种由CBAM-Wnet特征提取网络、内容增强器和转换器三部分构成的新型图像去噪网络模... 为进一步提高深度学习方法对货车运行故障动态图像检测系统(TFDS)图像去噪效果和边缘保持性,提出一种基于特征金字塔网络的图像去噪算法。该算法构建了一种由CBAM-Wnet特征提取网络、内容增强器和转换器三部分构成的新型图像去噪网络模型。采用特征金字塔网络与U-Net衍生网络,以增强模型的多尺度特征提取能力;利用内容增强器、卷积注意力机制(CBAM),以及转换器提高模型的边缘感知能力;构建新型复合函数,降低网络过拟合风险,同时提高其去噪性能。试验结果表明:与主流算法相比,所提算法在去噪效果和边缘保持性方面均表现更佳;在高斯噪声条件下的TFDS图像去噪任务中,峰值信噪比(PSNR)相较于其他算法平均提升0.86 dB,提升幅度为2.40%;结构相似(SSIM)性指数平均提升1.95%;在模拟真实世界噪声的TFDS图像去噪任务中,相较于其他算法,该算法的PSNR平均提升0.68 dB,提升幅度1.78%;SSIM平均提升1.28%。 展开更多
关键词 图像降噪 货车运行故障动态图像检测系统 特征金字塔网络 复合金字塔损失
在线阅读 下载PDF
轻量化的多尺度特征校准小目标检测网络
19
作者 徐杰 郭立君 +2 位作者 冯海 徐栋炯 张荣 《计算机应用》 北大核心 2025年第S1期228-234,共7页
为了解决复杂工业场景中边缘设备部署和小目标检测的漏检问题,提出一种轻量化的多尺度特征校准小目标检测网络(LMFC-Net)。首先,针对由于网络层数加深导致的浅层特征信息丢失及空间特征错位问题,提出多尺度特征校准的特征金字塔网络(MSF... 为了解决复杂工业场景中边缘设备部署和小目标检测的漏检问题,提出一种轻量化的多尺度特征校准小目标检测网络(LMFC-Net)。首先,针对由于网络层数加深导致的浅层特征信息丢失及空间特征错位问题,提出多尺度特征校准的特征金字塔网络(MSFC-FPN),利用深层特征校准浅层特征,在降低参数量的同时,提高模型对密集小目标的检测能力;其次,提出一种轻量化的共享参数卷积检测头(LSPC-Head),显著提升特征表达能力,并有效降低模型的参数和计算量;最后,通过通道剪枝和特征蒸馏降低计算和内存开销,并提升检测精度,使它适用于资源受限设备。实验结果表明,在FactorySafeDet数据集上,与YOLOv8n相比,LMFC-Net的参数量和计算量分别降低了76.7%和24.7%,召回率和平均精度均值(mAP50)分别提高了5.9和2.7个百分点。此外,在VisDrone2019、CrowdHuman和PCB公开数据集上,LMFC-Net具有良好的泛化性。与其他单阶段目标检测模型相比,LMFC-Net具有更小的模型参数量、计算量和更优的检测效果。 展开更多
关键词 小目标检测 轻量化 多尺度特征校准 特征金字塔网络 共享参数卷积检测头
在线阅读 下载PDF
用于胸片分类的自校正特征融合金字塔网络
20
作者 宫霄霖 程琦 李锵 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期511-520,共10页
胸部疾病的病灶区域面积差异较大,易受健康部位的影响,难以定位,并且用于诊断疾病的X射线胸片样本数据分布不平衡,导致胸部疾病分类网络的分类准确度较低.针对胸部疾病分类任务中仍然存在的问题和挑战,本文提出了一种自校正特征融合金... 胸部疾病的病灶区域面积差异较大,易受健康部位的影响,难以定位,并且用于诊断疾病的X射线胸片样本数据分布不平衡,导致胸部疾病分类网络的分类准确度较低.针对胸部疾病分类任务中仍然存在的问题和挑战,本文提出了一种自校正特征融合金字塔网络.该网络使用自校正卷积增强疾病部位在特征图上以及通道之间的位置联系,在不引入额外参数量的条件下增大了卷积的感受野,避免无病区域的信息干扰;然后通过特征融合金字塔网络整合多尺度图像特征信息,在获取高分辨率特征图的同时,能够准确地定位病变区域,可以更好地识别不同尺度疾病的特征,在多标签分类任务上具有独特的优势;同时引入频率通道注意力机制强化网络对疾病特征的提取能力,在上采样和特征融合变换之前,减少全局平均池化过程中造成的特征丢失;最后提出一种轮次焦点损失函数区分不同种类胸部疾病的训练程度,根据分类难易程度区分样本,并在不同的训练轮次调整权重,以解决胸部疾病样本分布不平衡问题.在ChestX-ray14数据集上的平均AUC值可达0.853,在CheXpert数据集上的平均AUC值可达0.903,超过了近年来较为先进的网络模型.实验结果表明,该网络与传统的胸部疾病分类网络相比能有效地提高胸部疾病的分类精度,并且具有较强的泛化能力. 展开更多
关键词 胸部疾病 自校正卷积 特征融合金字塔网络 频率通道注意力 轮次焦点损失函数
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部