期刊文献+
共找到833篇文章
< 1 2 42 >
每页显示 20 50 100
混合多策略北方苍鹰优化算法及特征选择
1
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
基于改进乌燕鸥算法同步优化SVM的特征选择
2
作者 赵小强 缐文霞 《兰州理工大学学报》 北大核心 2025年第3期89-98,共10页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法,避免乌燕鸥算法陷入局部最优的缺陷,增强算法全局搜索能力,提高收敛精度;其次将改进算法同特征选择和支持向量机相结合,同步优化二进制特征选择和SVM的参数;最后在10个标准数据集上进行特征选择仿真对比实验,实验结果表明相比原始算法及其他对比优化算法,所提算法能有效降低数据维度,提高分类准确率. 展开更多
关键词 乌燕鸥优化算法 余弦自适应 模拟退火算法 支持向量机 特征选择
在线阅读 下载PDF
改进蜣螂优化算法的入侵检测特征选择
3
作者 刘涛 王愉露 《计算机工程与设计》 北大核心 2025年第7期1936-1943,共8页
针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策... 针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策略和贪婪策略提升算法的全局寻优能力。实验结果表明,在CIC-IDS2017数据集上的特征选择实验中,算法平均保留了8.1个特征,最优特征子集的平均准确率达到了98.01%,验证该算法在降低特征的同时可以确保准确率。 展开更多
关键词 蜣螂优化算法 混沌映射 螺旋搜索 入侵检测 特征选择 对立学习策略 高斯与柯西变异扰动
在线阅读 下载PDF
基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断
4
作者 问亚鹏 张佳奇 +3 位作者 郭锐 杨锦昌 何丝丝 张浩 《液压与气动》 北大核心 2025年第8期65-78,共14页
数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊... 数据驱动的外啮合齿轮泵(以下简称齿轮泵)故障诊断中,存在实际作业中易受噪声干扰、故障特征冗余以及故障特征选择与分类器参数寻优繁琐问题,为此提出一种基于沙丘猫优化变分模态分解和蜣螂优化算法同步优化特征选择的齿轮泵磨损故障诊断方法。首先,搭建齿轮泵故障试验台获取原始故障数据,采用沙丘猫优化变分模态分解方法对齿轮泵4种磨损故障的振动信号进行降噪重构;然后,提取故障磨损4种重构信号的时域、频域和时频域统计特征共26种,并组成特征层;最后,基于蜣螂优化算法同步优化特征选择对故障特征集进行特征选择,同时优化支持向量机分类器参数,实现齿轮泵的磨损故障类型识别。结果显示,该齿轮泵故障诊断方法准确率高达99.6%,耗时仅49.8 s,具有较高的诊断精度和运算效率。 展开更多
关键词 齿轮泵 故障诊断 同步优化特征选择 蜣螂优化算法 沙丘猫优化变分模态分解
在线阅读 下载PDF
改进麻雀搜索算法的入侵检测特征选择 被引量:2
5
作者 刘涛 蒙学强 《计算机工程与设计》 北大核心 2024年第4期989-996,共8页
针对网络入侵检测所处理数据存在特征维数高、检测效率低、准确率不高的问题,提出一种改进麻雀搜索算法的特征选择方法,旨在减少特征冗余的同时提高分类准确率。利用改进Circle映射初始化种群;结合秃鹰搜索算法中的螺旋搜索方式更新发... 针对网络入侵检测所处理数据存在特征维数高、检测效率低、准确率不高的问题,提出一种改进麻雀搜索算法的特征选择方法,旨在减少特征冗余的同时提高分类准确率。利用改进Circle映射初始化种群;结合秃鹰搜索算法中的螺旋搜索方式更新发现者位置;采用单纯形法和小孔成像法优化适应度较差和最优麻雀的位置,提升算法的寻优能力。将该算法与其它算法在6个经典基准函数上进行对比测试,其在收敛速度、精度等方面均有提升。使用数据集CIC-IDS2017进行特征选择实验,平均保留了7.6个特征,准确率达到了99.5%,结果表明,该算法可以在保证准确率的同时有效降低特征维度。 展开更多
关键词 麻雀搜索算法 Circle映射 螺旋搜索 单纯形法 小孔成像 入侵检测 特征选择
在线阅读 下载PDF
面向特征选择任务的改进蜣螂优化算法 被引量:1
6
作者 李珺 徐秦 《电子测量技术》 北大核心 2024年第1期79-86,共8页
蜣螂优化算法是一种基于蜣螂不同行为模式的新型启发式算法,与其他算法相比的收敛速度更快,逃脱局部最优的能力更强。针对蜣螂优化算法不能进行特征选择的问题,在蜣螂优化算法的基础上提出了蜣螂灰狼融合算法。该算法基于3种改进策略:... 蜣螂优化算法是一种基于蜣螂不同行为模式的新型启发式算法,与其他算法相比的收敛速度更快,逃脱局部最优的能力更强。针对蜣螂优化算法不能进行特征选择的问题,在蜣螂优化算法的基础上提出了蜣螂灰狼融合算法。该算法基于3种改进策略:精英初始化种群策略、灰狼蜣螂融合策略、运行加速策略,进一步提高蜣螂优化算法在特征选择任务上的性能,并给出了算法整体的伪代码。实验结果表明,比较其他改进型启发式算法,蜣螂灰狼融合优化算法在12个分类数据集中能够得到更高精度、更低维度的特征子集,同时兼备收敛速度、运行速度更快的优点。 展开更多
关键词 特征选择 蜣螂优化算法 分类
在线阅读 下载PDF
基于互信息与萤火虫算法的网络入侵特征选择
7
作者 王新胜 杨锐 《计算机应用与软件》 北大核心 2024年第4期306-312,320,共8页
为减少网络入侵检测数据中的冗余特征,提出一种结合互信息和萤火虫算法的特征选择方法。针对互信息不能精确计算特征间冗余度,提出类内特征冗余互信息特征选择方法。针对萤火虫算法步长因子固定易使算法陷入局部最优等问题,提出自适应... 为减少网络入侵检测数据中的冗余特征,提出一种结合互信息和萤火虫算法的特征选择方法。针对互信息不能精确计算特征间冗余度,提出类内特征冗余互信息特征选择方法。针对萤火虫算法步长因子固定易使算法陷入局部最优等问题,提出自适应步长萤火虫算法特征选择。以上方法分别选取特征子集后利用投票策略选取最优子集,对该子集基于C4.5和贝叶斯网络分类器分类。实验结果表明,使用10个特征检测能有效提高入侵检测率、误报率和F-measure,同时还缩短训练和检测时间。此外,与现有的几种方法相比,该方法在准确率、检测率和F-measure都获得不错效果。 展开更多
关键词 网络入侵检测 特征选择 投票策略 互信息 萤火虫算法
在线阅读 下载PDF
面向抗倒塌地震动强度指标选取的特征选择算法性能评估
8
作者 胡进军 刘亦恒 刘巴黎 《地震工程与工程振动》 CSCD 北大核心 2024年第6期1-11,共11页
为了筛选有效预测结构倒塌能力的地震动强度指标,对比分析了MIC、ReliefF、XGBoost和Lasso这4种常见特征选择算法用于地震动强度指标筛选时的性能。基于单自由度结构增量动力分析结果及地震动强度指标建立特征选择回归模型,根据回归模... 为了筛选有效预测结构倒塌能力的地震动强度指标,对比分析了MIC、ReliefF、XGBoost和Lasso这4种常见特征选择算法用于地震动强度指标筛选时的性能。基于单自由度结构增量动力分析结果及地震动强度指标建立特征选择回归模型,根据回归模型输出权重及频数得到欧氏距离大小排序并筛选地震动强度指标,利用筛选结果对特征选择算法的性能进行评估。同时基于2层、4层、8层和12层钢筋混凝土框架结构的增量动力分析结果对筛选后强度指标建立最小二乘回归模型,以残差的标准差变化衡量不同特征选择算法筛选出的地震动强度指标对结构倒塌的预测能力。结果表明:基于Lasso回归算法筛选的地震动强度指标比其他算法用于结构倒塌预测时准确率提高31%。结果可为基于性能地震工程(performance-based earthquake engineering,PBEE)框架下结构易损性分析中及地震动不确定性分析中地震动强度指标筛选的特征选择算法提供参考,也可为结构倒塌预测的地震动强度指标筛选提供有效特征选择算法参考。 展开更多
关键词 地震动强度指标 特征选择算法 结构倒塌分析 增量动力分析 最小二乘回归
在线阅读 下载PDF
基于ReliefF算法与遗传算法的肌电信号特征选择 被引量:18
9
作者 何涛 胡洁 +1 位作者 夏鹏 谷朝臣 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第2期204-208,共5页
针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选... 针对肌电信号特征维数高、运算效率低等问题,提出了一种基于ReliefF算法与遗传算法(GA)相结合的肌电信号特征选择方法.分析了肌电信号的特征,运用小波分析对肌电信号进行特征提取,采用ReliefF算法评估所提取的高维特征信号的权值,以选出对分类效果影响显著(权值较大)的特征子集,采用GA进一步筛选出分类效果最佳的特征子集,并对比分析了基于ReliefFGA-Wrapper算法与全局搜索算法对肌电信号处理的时间和分类效果.结果表明,所提出的方法能够提高运算效率并具有很好的分类效果. 展开更多
关键词 肌电信号 relieff算法 遗传算法 特征选择
在线阅读 下载PDF
基于多标签ReliefF的特征选择算法 被引量:38
10
作者 黄莉莉 汤进 +1 位作者 孙登第 罗斌 《计算机应用》 CSCD 北大核心 2012年第10期2888-2890,2898,共4页
针对传统特征选择算法局限于单标签数据问题,提出一种多标签数据特征选择算法——多标签ReliefF算法。该算法依据多标签数据类别的共现性,假设样本各类标签的贡献值是相等的,结合三种贡献值计算方法,改进特征权值更新公式,最终获得有效... 针对传统特征选择算法局限于单标签数据问题,提出一种多标签数据特征选择算法——多标签ReliefF算法。该算法依据多标签数据类别的共现性,假设样本各类标签的贡献值是相等的,结合三种贡献值计算方法,改进特征权值更新公式,最终获得有效的分类特征。分类实验结果表明,在特征维数相同的情况下,多标签ReliefF算法的分类正确率明显高于传统特征选择算法。 展开更多
关键词 特征选择 多标签 relieff 降维 模式识别
在线阅读 下载PDF
一种基于ReliefF评估和互补系数的特征选择算法 被引量:1
11
作者 苏映雪 付耀文 黎湘 《电光与控制》 北大核心 2007年第3期12-15,18,共5页
Filter特征选择算法具有通用性强、算法复杂度低的特点,但对某一个具体的分类器选择的特征子集也许并不是最优的;Wrapper方法与其相反,对特定的分类器可以找到最优的特征子集,但算法复杂度很高。研究一种Filter与Wrapper相结合的混合型... Filter特征选择算法具有通用性强、算法复杂度低的特点,但对某一个具体的分类器选择的特征子集也许并不是最优的;Wrapper方法与其相反,对特定的分类器可以找到最优的特征子集,但算法复杂度很高。研究一种Filter与Wrapper相结合的混合型算法。首先从特征对样本分类效果的角度提出互补系数的概念,然后基于ReliefF评估和互补系数,提出ReCom算法。实验证明,由ReCom算法得到的特征子集与ReliefF算法得到的特征子集相比具有更好的性能,并且与传统Wrapper方法相比,该算法大大降低了时间复杂度。 展开更多
关键词 特征选择 relieff 互补系数
在线阅读 下载PDF
基于多策略融合斑马优化算法的特征选择方法 被引量:2
12
作者 王震 王新春 +2 位作者 杨培宏 费鹏宇 郑学奎 《现代电子技术》 北大核心 2024年第18期149-155,共7页
针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受... 针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受自适应权重和黄金正弦算法思想启发,提出一种基于自适应递减权重和黄金正弦更新机制的位置更新策略,用于改进斑马算法的局部寻优与全局探索能力;然后,进行标准测试函数实验,验证了IZOA能够有效提升寻优精度和收敛速度;最后,将K近邻分类器作为待优化目标,选取UCI库的12个标准数据集进行特征选择实验,并利用改进后的算法在特征选择模型中进行最优特征子集搜寻。实验结果表明,相比传统算法,所提算法的平均分类准确率提升4.47%,平均适应度值降低2.5%,验证了该算法在特征选择领域的优越性。 展开更多
关键词 斑马优化算法 多策略融合 特征选择 混沌映射 自适应权重 黄金正弦算法 K近邻分类器
在线阅读 下载PDF
基于改进黏菌算法的特征选择方法 被引量:2
13
作者 张鑫强 邱一卉 李若玉 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期550-561,共12页
[目的]在经常处理高维数据集的大数据时代中,特征选择是至关重要的.黏菌算法(slime mould algorithm,SMA)因其简单高效而被广泛应用于特征选择领域,并得到改进.然而,现有改进大多局限于策略添加和算法混合,未根据特征选择问题的特点进... [目的]在经常处理高维数据集的大数据时代中,特征选择是至关重要的.黏菌算法(slime mould algorithm,SMA)因其简单高效而被广泛应用于特征选择领域,并得到改进.然而,现有改进大多局限于策略添加和算法混合,未根据特征选择问题的特点进行深入改进.为此,本文提出了一种基于改进SMA(improved SMA,ISMA)的特征选择方法.[方法]首先,针对在特征选择时适应度函数值域较小导致的SMA全局探索和局部开发能力不平衡的问题,修改决定黏菌位置更新方式的参数;其次,针对SMA倾向往原点方向收敛的问题,改进SMA的位置更新公式;最后,针对SMA容易陷入局部最优的问题,提出一种基于均衡池改进黏菌位置更新公式的方法.进一步选取Musk1数据集和Lymphography数据集对比ISMA和SMA的全局探索和局部开发能力,并选取11个UCI数据集评价ISMA的性能.[结果]与SMA相比,ISMA具有更强的全局探索能力和局部开发能力,能够很好地平衡探索与开发.与SMA、GA和BGWO1等8种算法相比,ISMA在提高模型分类性能和降低特征维度上均有一定的竞争力.从平均分类准确率的角度看,与SMA相比,ISMA在所有数据集上均优于SMA,平均分类准确率最高提升6.53个百分点.与其他对比算法相比,ISMA在9个数据集上取得最优的平均分类准确率,而在剩下的2个数据集上也取得了次优的平均分类准确率,与第一名仅分别相差0.19个百分点和0.05个百分点,同时其平均维度缩减率均优于第一名.从平均维度缩减率的角度看,ISMA在2个数据集上取得最优的维度缩减率,总体表现良好.[结论]本文提出的基于ISMA的特征选择方法具有更高的泛化性能,与其他元启发式特征选择算法相比也有一定的优势. 展开更多
关键词 特征选择 黏菌算法 均衡池 元启发式算法
在线阅读 下载PDF
基于随机森林特征选择与POA-LSTM组合的参考作物腾发量预测方法
14
作者 李越 岳春芳 陈大春 《节水灌溉》 北大核心 2025年第1期120-128,共9页
为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首... 为了更好地捕捉参考作物腾发量(ET_(0))数据的非线性特点及有效影响因素,实现对气象资料缺乏时的ET_(0)精准预测,基于融合建模思想提出了一种随机森林特征选择与鹈鹕优化算法(POA)优化长短期记忆神经网络(LSTM)组合的ET_(0)预测方法。首先,采用随机森林特征选择方法筛选出有效气象因子作为模型输入;随后,通过POA搜索最优超参数组合用于优化LSTM模型;最后,基于最优超参数下的LSTM模型进行ET_(0)预测。结果表明,POA-LSTM模型整体优于其余模型,其中POA-LSTM1(u_(2)、N、R_(H)、T_(mean))预测精度最高,测试集R^(2)、RMSE和MAE分别为0.927、0.778和0.400 mm/d;POA-LSTM4(u_(2)、N)也能较好地适应少量气象参数估算ET_(0),测试集R^(2)、RMSE和MAE分别为0.881、0.995和0.510 mm/d,相较于其他方法,具有更高的预测精度和稳定性。 展开更多
关键词 参考作物腾发量 长短期记忆神经网络 随机森林 特征选择 鹈鹕优化算法
在线阅读 下载PDF
基于两阶段特征选择的电力系统暂态功角与电压一体化稳定性评估方法
15
作者 徐艳春 张婧宇 +2 位作者 张涛 席磊 MI Lu 《智慧电力》 北大核心 2025年第4期11-19,共9页
随着电力系统暂态功角与电压稳定性问题耦合加剧,针对高维冗余特征的一体化评估需求凸显。提出了两阶段特征选择方法。首先通过类可分离性评分和皮尔逊相关系数筛选关键特征,消除分类低效与冗余;进而采用二进制竞争搜索算法优化特征子集... 随着电力系统暂态功角与电压稳定性问题耦合加剧,针对高维冗余特征的一体化评估需求凸显。提出了两阶段特征选择方法。首先通过类可分离性评分和皮尔逊相关系数筛选关键特征,消除分类低效与冗余;进而采用二进制竞争搜索算法优化特征子集,结合多任务卷积门控循环网络构建评估模型。算例验证表明,该方法在降低特征维度的同时显著提升了暂态稳定评估效果。 展开更多
关键词 特征选择 暂态功角稳定 暂态电压稳定 类可分离性 竞争搜索算法 卷积门控循环单元
在线阅读 下载PDF
具有混合策略的樽海鞘群特征选择算法 被引量:2
16
作者 余紫康 董红斌 《智能系统学报》 CSCD 北大核心 2024年第3期757-765,共9页
近年来,随着计算机和数据库技术的快速发展,大规模数据集迅速增长,利用特征选择技术来筛选信息量大的特征已经变得非常重要。本文提出了一种具有混合策略的樽海鞘群特征选择算法(salp swarm feature selection algorithm with hybrid st... 近年来,随着计算机和数据库技术的快速发展,大规模数据集迅速增长,利用特征选择技术来筛选信息量大的特征已经变得非常重要。本文提出了一种具有混合策略的樽海鞘群特征选择算法(salp swarm feature selection algorithm with hybrid strategy,HS-SSA)。首先,本文生成一张基于互信息的排序表,并由排序表提出了新的初始化策略。其次,提出一个新颖的并且有条件调用的动态搜索算法。最后在位置更新上结合瞬态搜索算法(transient search algorithm,TSO),改进勘探和开发步骤的效率,增加解空间的灵活性和多样性,从而使算法能够快速定位到全局最优位置。为了验证算法的性能,实验选取14个UCI的数据集,并且与樽海鞘群算法(SSA)以及近几年樽海鞘群的改进算法等多种优化算法进行比较,结果表明HS-SSA在特征选择上具有更强的竞争力。 展开更多
关键词 特征选择 樽海鞘群算法 瞬态搜索算法 启发式算法 互信息 动态搜索算法 秩和检验 K近邻
在线阅读 下载PDF
基于特征选择的矿山微震信号自动识别
17
作者 郑培晓 蒲成志 +2 位作者 谢国森 罗勇 李广悦 《岩土力学》 北大核心 2025年第7期2199-2210,共12页
微震信号的自动识别是微震监测技术中亟需解决的一个重要问题,决定了预警的准确性与时效性。基于机器学习的方法虽在微震信号识别中得到了广泛应用,但其在处理低信噪比的原始信号时效果欠佳。该方法中,特征集和算法模型二者共同决定了... 微震信号的自动识别是微震监测技术中亟需解决的一个重要问题,决定了预警的准确性与时效性。基于机器学习的方法虽在微震信号识别中得到了广泛应用,但其在处理低信噪比的原始信号时效果欠佳。该方法中,特征集和算法模型二者共同决定了信号的识别率,但特征集构建尚缺乏统一的标准。为解决该问题,基于改进的多准则融合特征选择算法,开展了某金属矿山微震信号的自动识别研究。首先构建开放式信号特征库,库内分3类收录了多种被证实可用于信号识别的特征,随后运用改进的多准则融合特征选择算法对库内特征进行量化评分,选出最优子集,最后将该子集作为粒子群优化支持向量机(particle swarm optimization-support vector machine,简称PSO-SVM)识别算法的输入,开展信号自动识别试验。结果表明:使用改进后的多准则融合特征选择算法构建的最优子集包含32个特征,相较于传统方法构建的特征集包含特征类别更为丰富,将其作为信号输入,在使用少量训练数据的情况下,训练集与测试集的信号识别率分别为100.00%和99.23%,满足工程需要。不同类别特征对信号识别贡献不同,时频域特征相较于时域和频域特征具有更好的表现。该研究为微震信号的自动识别提供了新的有效途径,对推动微震监测技术在工程中的广泛应用具有重要意义。 展开更多
关键词 微震信号识别 特征选择 PSO-SVM算法 特征 原始信号
在线阅读 下载PDF
面向高维不平衡医学数据的特征选择算法 被引量:2
18
作者 苏璇 王远军 《小型微型计算机系统》 CSCD 北大核心 2024年第2期309-318,共10页
基于传统机器学习分类算法对影像组学的高维不平衡数据分类结果不理想的问题,本文提出一种改进海洋捕食者的不平衡特征选择算法.首先,对海洋捕食者算法MPA算法进行改进,引入精英反向矩阵增加算法迭代后期的种群多样性,引入新的CF参数改... 基于传统机器学习分类算法对影像组学的高维不平衡数据分类结果不理想的问题,本文提出一种改进海洋捕食者的不平衡特征选择算法.首先,对海洋捕食者算法MPA算法进行改进,引入精英反向矩阵增加算法迭代后期的种群多样性,引入新的CF参数改善算法的收敛速度与精度,同时合理分配原始参数分布和取值来满足算法在不同阶段的搜索需求;接着针对不平衡数据引入新的目标函数来帮助MPA算法收敛到更优的特征子集.最后,基于G-means的精英反向海洋捕食者算法GEMPA算法在14个基础测试函数上进行测试并在12个公开数据集上与MPA,基于K个最近邻相关性的在线特征选择算法K-OFSD以及其余的6种元启发式算法GA、PSO、CSO、SSA、SCA和MFO对比分析.以平均F-measure值,平均特征数量,平均运行时间为评估指标,通过实验可知GEMPA算法能够快速搜索到分类精度最高的特征子集,降低高维数据的冗余度,针对改善高维不平衡数据分类问题有很好的发展潜力. 展开更多
关键词 特征选择 高维不平衡 海洋捕食者算法 反向学习
在线阅读 下载PDF
基于特征选择和机器学习的森林蓄积量估算
19
作者 赵娅冰 彭道黎 +2 位作者 郭发苗 王荫 黄静娴 《北京林业大学学报》 北大核心 2025年第4期155-167,共13页
【目的】基于多源遥感数据,评估不同特征选择方法和机器学习算法组合构建的森林蓄积量估算模型的准确性,挖掘其协同互补潜力,以期有效提高森林蓄积量的估算精度。【方法】以河北省第九次国家森林资源连续清查数据为基础,结合GF-1、Senti... 【目的】基于多源遥感数据,评估不同特征选择方法和机器学习算法组合构建的森林蓄积量估算模型的准确性,挖掘其协同互补潜力,以期有效提高森林蓄积量的估算精度。【方法】以河北省第九次国家森林资源连续清查数据为基础,结合GF-1、Sentinel-2、Sentinel-1和ASTER GDEM 4种遥感数据,采用随机森林变量选择(VSURF)、递归特征消除(RFE)和Boruta 3种特征选择方法,以及支持向量回归(SVR)、K-最近邻(KNN)、随机森林(RF)、分类提升(CatBoost)和极端梯度提升(XGBoost)5种机器学习算法,构建蓄积量模型,并筛选出最优模型。此外,通过方差分析量化数据集、特征选择和机器学习算法这3个因素对森林蓄积量估算的影响。【结果】(1)方差分析结果表明,数据集、特征选择和机器学习算法均对蓄积量估算性能有显著影响。(2)多源遥感数据的结合能有效提高森林蓄积量的估算性能。与其他数据集相比,联合GF-1、Sentinel-2、Sentinel-1和ASTER GDEM数据构建的模型表现出更高的估算精度。从整体来看,Boruta特征选择方法优于VSURF和RFE。CatBoost在建模中的表现优于其他算法(SVR、KNN、RF和XGBoost)。(3)基于GF-1、Sentinel-2、Sentinel-1和ASTER GDEM的组合,使用Boruta特征选择方法和CatBoost机器学习算法构建的估算模型实现了最高的准确性(R^(2)=0.6385,RMSE=13.3053 m^(3)/hm^(2))。【结论】基于多源遥感数据估算保定市森林蓄积量时,结合特征选择和机器学习算法可显著优化模型的估算效果,得到更精准的蓄积量估算结果。研究结果不仅改进了当前应用多源遥感数据估算森林蓄积量的方法,还为大范围森林蓄积量监测提供了新的思路和参考依据。 展开更多
关键词 森林蓄积量 多源遥感数据 特征选择 机器学习算法 集成学习
在线阅读 下载PDF
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:2
20
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部