期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
卫星图像配准及匹配曲线特征评估法 被引量:3
1
作者 李京娜 邓嘉兴 王刚 《光电工程》 CAS CSCD 北大核心 2014年第3期73-81,共9页
由于卫星图像来自于不同的传感器、由不同的视角和光谱、在不同的时间获得,图像间存在较大差异。为了有效配准图像,提出一种"先粗后精"的配准算法,首先采用Fourier-Mellin变换算法实施快速的粗配准,然后采用以修正的结构相似... 由于卫星图像来自于不同的传感器、由不同的视角和光谱、在不同的时间获得,图像间存在较大差异。为了有效配准图像,提出一种"先粗后精"的配准算法,首先采用Fourier-Mellin变换算法实施快速的粗配准,然后采用以修正的结构相似度为测度的优化算法实施精确配准。对于真实的卫星图像配准,由于没有准确的衡量标准,很难给出定量的评估结果。本文提出一种新的配准评估方法?匹配曲线特征评估法,以匹配曲线的峰度、峰偏、峰值以及峰值间均方根误差(RMSE)为定量评估指标,以峰值间RMSE最小为准则自动调整配准参数。结果表明,"先粗后精"的配准算法能够实现相当精确的配准;匹配曲线特征评估法不仅能够从曲线的光滑度、尖锐度等特性直观描述配准性能,并能由曲线的特征指标定量评估配准效果,而且还能自动调整配准参数,使配准更加精确。 展开更多
关键词 图像配准 匹配曲线特征评估法 修正的结构相似度 傅里叶-梅林变换
在线阅读 下载PDF
总体局部特征尺度分解及ELM的滚动轴承故障诊断 被引量:3
2
作者 董素鸽 胡代弟 葛明涛 《机械设计与制造》 北大核心 2017年第2期226-230,共5页
针对滚动轴承非平稳性的振动信号,提出了基于总体局部特征尺度分解(Ensemble Local Characteristic-scale Decomposition,ELCD)及极限学习机的滚动轴承故障诊断方法。首先,对振动信号进行ELCD分解,获得一系列内禀尺度分量(Intrinsic Sca... 针对滚动轴承非平稳性的振动信号,提出了基于总体局部特征尺度分解(Ensemble Local Characteristic-scale Decomposition,ELCD)及极限学习机的滚动轴承故障诊断方法。首先,对振动信号进行ELCD分解,获得一系列内禀尺度分量(Intrinsic Scale Component,ISC);其次,根据分解后ISC分量计算时域指标、能量、相对熵,利用特征评估法提取敏感特征;最后,将敏感特征向量输入极限学习机(Extreme Learning Machine,ELM)进行训练与测试,从而识别滚动轴承的故障类型。对实验信号的分析表明,该方法能够有效的诊断出滚动轴承不同的工作状态,且效果较局部特征尺度分解方法好。 展开更多
关键词 滚动轴承 故障诊断 极限学习机 总体局部特征尺度分解 特征评估法
在线阅读 下载PDF
Risk based security assessment of power system using generalized regression neural network with feature extraction 被引量:2
3
作者 M. Marsadek A. Mohamed 《Journal of Central South University》 SCIE EI CAS 2013年第2期466-479,共14页
A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n... A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy. 展开更多
关键词 generalized regression neural network line overload low voltage principle component analysis risk index voltagecollapse
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部