期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
用于胸片分类的自校正特征融合金字塔网络
1
作者 宫霄霖 程琦 李锵 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期511-520,共10页
胸部疾病的病灶区域面积差异较大,易受健康部位的影响,难以定位,并且用于诊断疾病的X射线胸片样本数据分布不平衡,导致胸部疾病分类网络的分类准确度较低.针对胸部疾病分类任务中仍然存在的问题和挑战,本文提出了一种自校正特征融合金... 胸部疾病的病灶区域面积差异较大,易受健康部位的影响,难以定位,并且用于诊断疾病的X射线胸片样本数据分布不平衡,导致胸部疾病分类网络的分类准确度较低.针对胸部疾病分类任务中仍然存在的问题和挑战,本文提出了一种自校正特征融合金字塔网络.该网络使用自校正卷积增强疾病部位在特征图上以及通道之间的位置联系,在不引入额外参数量的条件下增大了卷积的感受野,避免无病区域的信息干扰;然后通过特征融合金字塔网络整合多尺度图像特征信息,在获取高分辨率特征图的同时,能够准确地定位病变区域,可以更好地识别不同尺度疾病的特征,在多标签分类任务上具有独特的优势;同时引入频率通道注意力机制强化网络对疾病特征的提取能力,在上采样和特征融合变换之前,减少全局平均池化过程中造成的特征丢失;最后提出一种轮次焦点损失函数区分不同种类胸部疾病的训练程度,根据分类难易程度区分样本,并在不同的训练轮次调整权重,以解决胸部疾病样本分布不平衡问题.在ChestX-ray14数据集上的平均AUC值可达0.853,在CheXpert数据集上的平均AUC值可达0.903,超过了近年来较为先进的网络模型.实验结果表明,该网络与传统的胸部疾病分类网络相比能有效地提高胸部疾病的分类精度,并且具有较强的泛化能力. 展开更多
关键词 胸部疾病 自校正卷积 特征融合金字塔网络 频率通道注意力 轮次焦点损失函数
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法 被引量:2
2
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-FPN) OR-RepN4 Shape-NWD
在线阅读 下载PDF
基于FCOS神经网络的制动主缸内槽缺陷检测方法 被引量:5
3
作者 王芷薇 郭斌 +2 位作者 胡晓峰 罗哉 段林茂 《计量学报》 CSCD 北大核心 2021年第9期1225-1231,共7页
针对主缸内槽缺陷检测存在干扰因素复杂、检测精度低等难点,提出了一种基于全卷积单阶段神经网络(FCOS)的主缸内槽缺陷检测算法。利用特征融合金字塔网络进行特征提取并逐像素预测,得到缺陷种类,实现凹槽缺陷的自动检测。实验结果表明,F... 针对主缸内槽缺陷检测存在干扰因素复杂、检测精度低等难点,提出了一种基于全卷积单阶段神经网络(FCOS)的主缸内槽缺陷检测算法。利用特征融合金字塔网络进行特征提取并逐像素预测,得到缺陷种类,实现凹槽缺陷的自动检测。实验结果表明,FCOS网络对制动主缸内槽砂眼、划痕、振刀纹缺陷检测的平均精度均值分别为85.2%、87.5%、90.1%,精确度分别为0.98、0.89、0.95。实验结果与Mask R-CNN网络和Faster R-CNN网络的实验结果进行对比,FCOS网络具有更高的准确率,学习时长大幅度缩短,且满足实时检测要求。 展开更多
关键词 计量学 内槽缺陷检测 制动主缸 全卷积网络 FCOS 特征融合金字塔网络
在线阅读 下载PDF
基于智能机器人的水下建筑物裂缝检测方法与应用 被引量:7
4
作者 刘巍 葛海彬 +3 位作者 徐妍彦 赵洪光 金京善 季昊巍 《长江科学院院报》 CSCD 北大核心 2023年第4期164-169,190,共7页
针对水下建筑物裂缝检测问题,研发了一款新型智能水下机器人,此机器人具备恒温控制、低耗能驱动功能,可以在超低温深水环境下进行自主采集数据、导航与定位。基于机器人采集得到的图像数据,在图像预处理、深度卷积网络理论和裂缝特征数... 针对水下建筑物裂缝检测问题,研发了一款新型智能水下机器人,此机器人具备恒温控制、低耗能驱动功能,可以在超低温深水环境下进行自主采集数据、导航与定位。基于机器人采集得到的图像数据,在图像预处理、深度卷积网络理论和裂缝特征数据标注的基础上,改进了原始的CNN模型,提出了特征金字塔融合卷积神经网络模型FPECNN,对不同类型的裂缝进行了提取。将FPECNN网络应用于莲花水电站大坝的裂缝检测工程中,计算结果表明FPECNN在检测率、召回率和F值上都处于较高的水平,达到了97.26%、98.04%和96.65%,耗时为3.12 s;FPECNN网络普适性与鲁棒性更佳,能够适应大多数的裂缝数据,生存能力更好,有利于解决常规CNN模型在水下建筑物检测中检测率低、效率低的问题。该智能机器人可将检测人员从高寒水下恶劣、繁重和危险的现场作业中解脱出来,同时解决水电站传统检测中因弃水造成的巨大经济损失问题,并能提高检测效率和精度。 展开更多
关键词 智能机器人 裂缝检测 水下建筑物 特征金字塔融合卷积神经网络 检测率
在线阅读 下载PDF
基于改进SSD的食物浪费行为识别方法 被引量:2
5
作者 杨永闯 王昊 王新良 《计算机工程与设计》 北大核心 2023年第8期2523-2530,共8页
为更准确地识别现实生活中复杂环境下的食品浪费行为,提出一种改进单激发多盒检测器(SSD)算法,增强算法在检测遮挡对象时的鲁棒性。将SSD基础网络替换成Resnet,增强特征提取能力。以实际应用中数据集真实框大小为依据,重新设计SSD检测... 为更准确地识别现实生活中复杂环境下的食品浪费行为,提出一种改进单激发多盒检测器(SSD)算法,增强算法在检测遮挡对象时的鲁棒性。将SSD基础网络替换成Resnet,增强特征提取能力。以实际应用中数据集真实框大小为依据,重新设计SSD检测时默认框的生成比例。通过添加SE模块,使模型在训练过程中增强重要通道信息。利用双向融合特征金字塔网络(BiFPN)对不同检测层中的特征进行融合。实验结果表明,改进后的SSD目标检测算法在自制的浪费行为数据集中检测精度达到88.49%,相比原始SSD提高了5.09%。 展开更多
关键词 浪费行为检测 遮挡对象 单激发多盒检测器 特征提取 默认框比例 通道注意力模块 双向融合特征金字塔网络
在线阅读 下载PDF
基于YOLO-RMFP的光伏板缺陷检测方法研究
6
作者 李莹 孙钰鑫 +1 位作者 张强 王淦源 《电子测量与仪器学报》 2025年第8期178-188,共11页
针对光伏板内部缺陷目标小且尺寸差异大的问题,提出了一种基于YOLOv8n的改进模型YOLO-RMFP。首先,将高效多尺度注意力机制与感受野注意力相结合,提出了一种感受野混合注意力机制,使模型聚焦不同尺度的特征,并解决高效多尺度注意力机制... 针对光伏板内部缺陷目标小且尺寸差异大的问题,提出了一种基于YOLOv8n的改进模型YOLO-RMFP。首先,将高效多尺度注意力机制与感受野注意力相结合,提出了一种感受野混合注意力机制,使模型聚焦不同尺度的特征,并解决高效多尺度注意力机制参数共享问题,提升光伏板微小缺陷检测精度。其次,将感受野混合注意力机制与空间金字塔池化模块结合,增强模型对多尺度特征的捕捉能力及对复杂特征区域的关注度,使模型在复杂背景下能够有效剔除噪声并增强鲁棒性,进一步增强光伏板缺陷小目标的检测精度。然后,将YOLOv8n主干网络中不同分辨率的特征映射与改进后的多尺度特征融合金字塔网络相结合,进一步增强了特征信息的交互性,以实现更全面的特征提取并增强目标检测的检测性能。最后,在PIoU的基础上,通过改变缺陷样本难易的权重,提升目标定位的精确度,有效缓解了光伏板缺陷样本不平衡问题。通过消融实验和对比实验的结果表明,YOLO-RMFP网络模型的检测精度mAP@0.5和mAP@0.5:0.95值分别提高3.1%和6.5%,精准度和召回率分别提升了4.2%和3.5%。满足了光伏板缺陷检测的评估要求。 展开更多
关键词 光伏板缺陷 目标检测 YOLOv8n 感受野混合注意力机制 多尺度特征融合金字塔网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部