期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向图谱频繁关系模式挖掘的异质图神经网络
1
作者 段立 封皓君 张碧莹 《计算机应用与软件》 北大核心 2024年第12期201-207,共7页
鉴于目前挖掘算法难以对知识图谱建模等问题,提出一种描述和提取节点范围内结构的异质图神经网络模型,旨在挖掘其中的频繁关系模式以及各结构的分布。该模型将关系信息作为节点特征输入,利用自编码机制与多头注意力机制保留原始结构信息... 鉴于目前挖掘算法难以对知识图谱建模等问题,提出一种描述和提取节点范围内结构的异质图神经网络模型,旨在挖掘其中的频繁关系模式以及各结构的分布。该模型将关系信息作为节点特征输入,利用自编码机制与多头注意力机制保留原始结构信息,同时引入特征结构平移层将相同结构映射到同一空间中,以获得频繁出现的结构。实验结果表明,该模型可以更快地挖掘图谱关系模式以及各结构在图中的分布;同时在验证特征表达能力的链接预测任务中有稳定表现,在关系类型较多的异质图中甚至优于部分联合学习模型。 展开更多
关键词 知识图谱 图神经网络 自编码机制 多头注意力机制 特征结构平移层
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部