期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用特征波段提取及结合机器学习对小米淀粉的高光谱检测研究
1
作者 王国梁 赵媛 +5 位作者 刘敏 郭二虎 王瑞 范惠萍 李瑜辉 张艾英 《中国粮油学报》 CAS CSCD 北大核心 2024年第4期149-157,共9页
运用高光谱检测技术实现小米淀粉的快速检测在小米定级、定价及降低加工成本中具有重要意义。本研究基于高光谱检测技术,采用化学计量学及机器学习相关知识对小米直链、支链淀粉含量进行检测,并提出特征波段提取联用预处理方法及Logisti... 运用高光谱检测技术实现小米淀粉的快速检测在小米定级、定价及降低加工成本中具有重要意义。本研究基于高光谱检测技术,采用化学计量学及机器学习相关知识对小米直链、支链淀粉含量进行检测,并提出特征波段提取联用预处理方法及Logistic结合COOT(coot optimization algorithm)优化算法。结果表明采用特征波段提取联用算法建立的PLSR(partial least squares regression)模型能够在减少波段冗余情况下不影响模型预测精度,其中直链淀粉较好模型为MSC(multiplicative scatter correction)-RF(random frog)-IRIV(iteratively retains informative variables)-PLSR,支链淀粉较好模型为MSC-CARS(competitive adaptive reweighted sampling)-IRIV-PLSR。为了进一步提高模型预测精度,基于最佳预处理算法结合Logistic-COOT建立BP(back propagation)预测模型能够较好地预测小米直链、支链淀粉的含量,模型评价直链、支链淀粉相关系数(correlation coefficient,R)、均方根误差(root mean squared error,RMSE)、相对分析误差(relative percent deviation,RPD)分别为0.74、1.19、1.51和0.72、5.25、1.40,研究可为小米其他营养成分的高光谱检测及产品分类、定级等提供理论参考。 展开更多
关键词 小米淀粉 高光谱检测 特征波段提取联用 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部