期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用特征波段提取及结合机器学习对小米淀粉的高光谱检测研究
1
作者
王国梁
赵媛
+5 位作者
刘敏
郭二虎
王瑞
范惠萍
李瑜辉
张艾英
《中国粮油学报》
CAS
CSCD
北大核心
2024年第4期149-157,共9页
运用高光谱检测技术实现小米淀粉的快速检测在小米定级、定价及降低加工成本中具有重要意义。本研究基于高光谱检测技术,采用化学计量学及机器学习相关知识对小米直链、支链淀粉含量进行检测,并提出特征波段提取联用预处理方法及Logisti...
运用高光谱检测技术实现小米淀粉的快速检测在小米定级、定价及降低加工成本中具有重要意义。本研究基于高光谱检测技术,采用化学计量学及机器学习相关知识对小米直链、支链淀粉含量进行检测,并提出特征波段提取联用预处理方法及Logistic结合COOT(coot optimization algorithm)优化算法。结果表明采用特征波段提取联用算法建立的PLSR(partial least squares regression)模型能够在减少波段冗余情况下不影响模型预测精度,其中直链淀粉较好模型为MSC(multiplicative scatter correction)-RF(random frog)-IRIV(iteratively retains informative variables)-PLSR,支链淀粉较好模型为MSC-CARS(competitive adaptive reweighted sampling)-IRIV-PLSR。为了进一步提高模型预测精度,基于最佳预处理算法结合Logistic-COOT建立BP(back propagation)预测模型能够较好地预测小米直链、支链淀粉的含量,模型评价直链、支链淀粉相关系数(correlation coefficient,R)、均方根误差(root mean squared error,RMSE)、相对分析误差(relative percent deviation,RPD)分别为0.74、1.19、1.51和0.72、5.25、1.40,研究可为小米其他营养成分的高光谱检测及产品分类、定级等提供理论参考。
展开更多
关键词
小米淀粉
高光谱检测
特征波段提取联用
机器学习
在线阅读
下载PDF
职称材料
题名
利用特征波段提取及结合机器学习对小米淀粉的高光谱检测研究
1
作者
王国梁
赵媛
刘敏
郭二虎
王瑞
范惠萍
李瑜辉
张艾英
机构
山西农业大学谷子研究所
山西农业大学农学院
出处
《中国粮油学报》
CAS
CSCD
北大核心
2024年第4期149-157,共9页
基金
杂粮种质资源创新与分子育种国家实验室项目(202204010910001-13)
国家现代农业产业技术体系建设专项(CARS-06-14.5-A21)
山西省现代农业产业技术体系谷子体系项目(2023CYJSTX04-04)。
文摘
运用高光谱检测技术实现小米淀粉的快速检测在小米定级、定价及降低加工成本中具有重要意义。本研究基于高光谱检测技术,采用化学计量学及机器学习相关知识对小米直链、支链淀粉含量进行检测,并提出特征波段提取联用预处理方法及Logistic结合COOT(coot optimization algorithm)优化算法。结果表明采用特征波段提取联用算法建立的PLSR(partial least squares regression)模型能够在减少波段冗余情况下不影响模型预测精度,其中直链淀粉较好模型为MSC(multiplicative scatter correction)-RF(random frog)-IRIV(iteratively retains informative variables)-PLSR,支链淀粉较好模型为MSC-CARS(competitive adaptive reweighted sampling)-IRIV-PLSR。为了进一步提高模型预测精度,基于最佳预处理算法结合Logistic-COOT建立BP(back propagation)预测模型能够较好地预测小米直链、支链淀粉的含量,模型评价直链、支链淀粉相关系数(correlation coefficient,R)、均方根误差(root mean squared error,RMSE)、相对分析误差(relative percent deviation,RPD)分别为0.74、1.19、1.51和0.72、5.25、1.40,研究可为小米其他营养成分的高光谱检测及产品分类、定级等提供理论参考。
关键词
小米淀粉
高光谱检测
特征波段提取联用
机器学习
Keywords
millet starch
hyperspectral
feature bands extraction sequential combination
machine learning algorithm
分类号
O657.3 [理学—分析化学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
利用特征波段提取及结合机器学习对小米淀粉的高光谱检测研究
王国梁
赵媛
刘敏
郭二虎
王瑞
范惠萍
李瑜辉
张艾英
《中国粮油学报》
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部