期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于特征模态分解及多尺度模糊散布熵的滚动轴承故障诊断
1
作者 梁翔宇 胡业林 +1 位作者 马向阳 宋晓 《科学技术与工程》 北大核心 2025年第1期176-185,共10页
针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)... 针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)优化支持向量机的滚动轴承故障诊断方法。为了解决FMD中关键参数不具有自适应性这一问题,以最小包络熵作为目标函数,采用白鲸优化算法(beluga whale optimization,BWO)优化FMD寻找最优参数组合,实现对故障信号的最优分解;引入多尺度模糊散布熵构建分解后不同模态下的特征向量;最后,将特征向量输入支持向量机中进行训练和识别,通过公开数据集和自制实验平台数据集验证了提出方法的有效性。 展开更多
关键词 特征模态分解 多尺度模糊散布熵 支持向量机 滚动轴承 故障诊断
在线阅读 下载PDF
基于鲸鱼算法优化特征模态分解的滚动轴承复合故障诊断方法
2
作者 徐帅 张超 《机电工程》 北大核心 2025年第8期1440-1449,共10页
针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值... 针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值,并将其作为目标函数,该指标不仅能够精准捕捉信号的故障特征,还能在分解过程中平衡各模态之间的关系;然后,利用WOA对FMD中的两个关键参数(即模态数n和滤波器长度L)进行了自适应优化,以调整到最佳值,确保FMD分解结果既能充分提取故障特征,又能有效抑制噪声干扰;最后,基于内蒙古科技大学机械工程学院的HZXT-DS-003双跨转子滚动轴承试验平台,构建了涵盖多种复合故障模式的轴承数据集,并进行了实验分析。仿真与实验研究结果表明:该方法在噪声抑制方面表现出色,能够有效识别复合故障中相对较弱的故障特征频率,从而显著提升了滚动轴承复合故障诊断的准确性和可靠性;此外,通过将该方法与对比方法进行了多方面的定性和定量对比分析,进一步验证了该方法的优越性。可见基于WOA优化FMD的故障诊断方法可以对滚动轴承复合故障进行有效诊断。 展开更多
关键词 滚动轴承故障诊断 特征模态分解 鲸鱼优化算法 自适应加权频域峰度与交叉信息熵比值 故障特征提取 噪声干扰抑制
在线阅读 下载PDF
基于参数优化特征模态分解的强背景噪声下滚动轴承故障诊断 被引量:4
3
作者 施亦非 黄宇峰 +2 位作者 王锋 石佳 张洁 《振动与冲击》 EI CSCD 北大核心 2024年第21期107-115,共9页
为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选... 为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选取的问题,以平方包络谱峭度(kurtosis of the square envelope spectrum,KSES)为权值,结合平方包络谱基尼系数(Gini index of the square envelope spectrum,GISES)构建加权平方包络谱基尼系数(weighted Gini index of the square envelope spectrum,WGISES)作为目标函数,通过优化算法确定FMD的最优参数组合;其次,为解决FMD的主模态分量难以选取的问题,通过计算所分解模态分量的KSES值选取主模态分量;最后,通过包络谱分析实现故障诊断。经仿真信号和实测信号分析,验证了POFMD在强背景噪声下滚动轴承故障诊断中的有效性。与变分模态分解、最大相关峭度解卷积和谱峭度相比,POFMD有更优越的故障特征提取性能。 展开更多
关键词 特征模态分解(FMD) 包络谱峭度(KSES) 基尼系数 滚动轴承 故障诊断
在线阅读 下载PDF
一种改进特征模态分解的滚动轴承复合故障特征提取方法 被引量:1
4
作者 周小龙 李佳宏 +3 位作者 王相坤 王昊天 杨知伦 曹霖霖 《制造技术与机床》 北大核心 2024年第5期42-49,共8页
针对滚动轴承故障信号非平稳、多分量并伴随强背景噪声,导致其复合故障特征难以有效分离的问题,提出一种改进特征模态分解(feature mode decomposition,FMD)的特征提取方法。采用FMD将滚动轴承复合故障信号分解为一系列模态分量,对影响... 针对滚动轴承故障信号非平稳、多分量并伴随强背景噪声,导致其复合故障特征难以有效分离的问题,提出一种改进特征模态分解(feature mode decomposition,FMD)的特征提取方法。采用FMD将滚动轴承复合故障信号分解为一系列模态分量,对影响分解精度的关键参数特性进行研究,提出了相关参数选取方法。从信号间关联程度和能量角度出发,通过综合评价因子算法选择对故障敏感的模态分量,并经包络解调获取敏感模态分量的包络谱以提取故障特征频率,实现滚动轴承复合故障的诊断。通过仿真信号及实测信号分析,并同变分模态分解(variational mode decomposition,VMD)方法进行比较。结果表明,所提方法可有效抑制噪声干扰影响,提升滚动轴承故障特征信息获取能力,实现滚动轴承复合故障的有效诊断。 展开更多
关键词 特征模态分解 敏感模态分量 滚动轴承 复合故障 特征提取
在线阅读 下载PDF
基于参数自适应特征模态分解的滚动轴承故障诊断方法 被引量:20
5
作者 鄢小安 贾民平 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第10期252-259,共8页
针对强背景噪声下轴承故障信息难以有效提取的问题,提出一种基于参数自适应特征模态分解的滚动轴承故障诊断方法。首先,为了克服原始特征模态分解(FMD)需要依赖人为经验设定关键参数而不具有自适应性的缺点,提出基于平方包络谱特征能量... 针对强背景噪声下轴承故障信息难以有效提取的问题,提出一种基于参数自适应特征模态分解的滚动轴承故障诊断方法。首先,为了克服原始特征模态分解(FMD)需要依赖人为经验设定关键参数而不具有自适应性的缺点,提出基于平方包络谱特征能量比(FER-SES)的网格搜索方法自动地确定FMD的模态个数n和滤波器长度L;随后,采用参数优化的FMD将原轴承振动信号划分为n个模态分量,并选取具有最大FER-SES的模态分量为敏感模态分量;最后,通过计算敏感模态分量的平方包络谱来提取故障特征频率,从而判别轴承故障类型。通过仿真信号和工程案例分析验证了提出方法的有效性。与变分模态分解(VMD)和谱峭度方法(SK)相比,提出方法具有更好的故障特征提取性能。 展开更多
关键词 特征模态分解 平方包络谱特征能量比 滚动轴承 故障诊断
在线阅读 下载PDF
特征模态函数双谱分析在叶片裂纹识别中的应用 被引量:2
6
作者 靳子洋 陆永耕 +1 位作者 张彬 姚晓龙 《噪声与振动控制》 CSCD 2016年第1期153-156,共4页
针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含... 针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含有高频信号的高阶IMF分量进行重构,利用双谱提取叶片裂纹的振动信号特征。通过仿真信号和实验分析,验证叶片裂纹产生的高频冲击对叶片振动信号高频部分双谱的影响,证明IMF分量双谱分析的有效性,为风电叶片正常状态监测提供依据。 展开更多
关键词 振动与波 叶片裂纹 特征模态函数 经验模态分解 双谱分析
在线阅读 下载PDF
基于RTH-FMD和1.5维谱的滚动轴承早期故障诊断方法研究
7
作者 唐贵基 张龙 +3 位作者 薛贵 徐振丽 曾鹏飞 王晓龙 《动力工程学报》 北大核心 2025年第5期714-723,共10页
针对滚动轴承的早期故障诊断问题,深入研究了一种红尾鹰(RTH)算法参数优化特征模态分解(FMD)和1.5维谱相结合的滚动轴承故障诊断方法。首先,通过理论分析,设计出脉冲能量因子指标(PEFI),并将其作为适应度函数;其次,利用RTH算法并行搜寻... 针对滚动轴承的早期故障诊断问题,深入研究了一种红尾鹰(RTH)算法参数优化特征模态分解(FMD)和1.5维谱相结合的滚动轴承故障诊断方法。首先,通过理论分析,设计出脉冲能量因子指标(PEFI),并将其作为适应度函数;其次,利用RTH算法并行搜寻FMD的关键影响参数组合,自适应地达到信号最佳分解效果;再次,通过PEFI选取分解后的最优信号分量,并进行包络解调运算;最后,计算包络信号的1.5维谱,在谱图中分析、提取轴承故障特征频率信息,实现轴承早期微弱故障的准确性诊断。模拟故障实验和工程案例分析结果表明:所研究方法解决了参数自适应的问题,大幅降低了噪声及其他干扰成分对诊断的影响,拥有良好的鲁棒性,能够有效提取轴承早期故障信号中的微弱特征信息,具有重要的实际工程参考价值。 展开更多
关键词 滚动轴承 微弱故障提取 特征模态分解 红尾鹰算法 1.5维谱
在线阅读 下载PDF
参数自适应FMD在轴承早期故障诊断中的应用
8
作者 王红 王泽宇 何勇 《振动工程学报》 北大核心 2025年第8期1788-1798,共11页
针对特征模态分解(FMD)的轴承早期微弱故障诊断效果易受滤波器长度L、频段分割数K、模态分解个数n影响的问题,提出用遗传算法优化FMD预设参数,并以峭度、包络熵和修正的自适应包络谱特征能量比为综合目标函数的诊断方法。该方法利用遗... 针对特征模态分解(FMD)的轴承早期微弱故障诊断效果易受滤波器长度L、频段分割数K、模态分解个数n影响的问题,提出用遗传算法优化FMD预设参数,并以峭度、包络熵和修正的自适应包络谱特征能量比为综合目标函数的诊断方法。该方法利用遗传算法比较不同预设参数下经FMD分解各分量信号的综合目标函数值,并选取其中最大值对应的L、K、n作为FMD的预设参数,通过FMD处理后信号的包络谱特征判定轴承的故障类型。经西储大学和辛辛那提大学的公开故障轴承数据以及转向架轴箱轴承数据验证,该方法具有较好的抗噪声能力和有效的早期微弱故障诊断能力。 展开更多
关键词 滚动轴承 早期微弱故障 特征模态分解 遗传算法
在线阅读 下载PDF
基于AFMD和SVDD的风电机组变桨轴承损伤识别
9
作者 王晓龙 张博文 +3 位作者 金韩微 付锐棋 杨秀彬 吴鹏 《太阳能学报》 北大核心 2025年第3期514-523,共10页
针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适... 针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适应特征模态分解,从中提取出蕴含丰富特征信息的模态分量;继而计算出所提取模态分量的包络信号并做进一步奇异值分解降噪处理,从而增强包络信号的信噪比;最后对比理论损伤特征频率及包络谱中幅值突出的频率成分,用于判断变桨轴承的故障损伤。实验数据分析结果表明,所提方法能从复杂原始振动信号中有效提取出微弱特征信息,实现变桨轴承损伤部位的准确甄别,具有一定工程参考借鉴价值。 展开更多
关键词 风电机组 变桨轴承 损伤识别 自适应特征模态分解 奇异值分解降噪
在线阅读 下载PDF
基于IVYA-FMD和EELM-Yager的轴承小样本故障诊断模型
10
作者 王恒迪 王豪馗 +2 位作者 陈鹏 吴升德 马盈丰 《机电工程》 北大核心 2025年第6期1093-1101,共9页
针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解... 针对滚动轴承故障特征提取难度大以及不同故障类型训练样本稀缺的问题,提出了一种基于参数优化特征模态分解(FMD)和集成极限学习机(EELM)的小样本滚动轴承故障诊断方法。首先,采用常春藤算法(IVYA)对FMD参数进行了优化,提升了模态分解的精确度,并采用最小残差指数(REI)作为最优模态分量的选取准则,从最优模态分量中提取了故障信号时域、频域及熵值的关键特征;然后,将所提取的特征输入EELM中进行了故障识别;最后,采用Yager加权平均规则对EELM的分类结果进行了融合,得到了综合故障诊断结果。研究结果表明:IVYA-FMD在信号处理过程中,具有优秀的特征提取和抗干扰能力,可有效提取原始信号的故障特征;IVYA-FMD和EELM-Yager模型在实验数据中,训练集与测试集按照8∶2的比例进行分割时的准确率达到99.12%;当训练集与测试集按照2:8的比例进行分割时,该方法在实验数据中的准确率高达92.5%,在CWRU数据集和SEU数据集中的准确率均超过96.8%。与其他智能诊断模型相比,IVYA-FMD和EELM-Yager在小样本滚动轴承故障诊断领域展现出显著的可行性和优越性。 展开更多
关键词 特征模态分解 常春藤算法 集成极限学习机 Yager加权平均 小样本故障诊断 滚动轴承
在线阅读 下载PDF
基于声发射信号EMD-WPD特征融合的航天器在轨泄漏辨识方法 被引量:7
11
作者 綦磊 梁真馨 +3 位作者 丁红兵 郑悦 芮小博 张宇 《振动与冲击》 EI CSCD 北大核心 2022年第4期110-116,共7页
长期运行在空间环境中的航天器可能由于撞击、振动、老化等因素而发生气体泄漏,在轨泄漏辨识对航天器安全保障具有重要意义。提出了一种基于声发射信号经验模态分解(empirical mode decomposition,EMD)和小波包分解(wavelet packet deco... 长期运行在空间环境中的航天器可能由于撞击、振动、老化等因素而发生气体泄漏,在轨泄漏辨识对航天器安全保障具有重要意义。提出了一种基于声发射信号经验模态分解(empirical mode decomposition,EMD)和小波包分解(wavelet packet decomposition,WPD)特征融合的航天器泄漏辨识方法,首先将声发射信号分别通过EMD和WPD分解成为不同频率范围内的子带信号,考虑能量特征误差与不稳定性,提取信号无量纲因子和频率特征参数并应用Relief F算法选取特征。最后,构建支持向量机(support vector machines,SVM)机器学习数据库,训练泄漏分类模型并利用测试集交叉验证模型分类精度。结果表明,EMD和WPD分解特征并行融合分类模型可显著提高辨识精度,最高可达96.9%,且输入特征数量少,是一种具有应用前景的航天器在轨气体泄漏辨识方法。 展开更多
关键词 真空泄漏 声发射检测 经验模态分解-小波包分解(EMD-WPD)特征融合 支持向量机(SVM)
在线阅读 下载PDF
基于OFMD和FSC的滚动轴承复合故障诊断
12
作者 唐贵基 张龙 +2 位作者 薛贵 徐振丽 王晓龙 《振动与冲击》 EI CSCD 北大核心 2024年第15期160-168,共9页
针对滚动轴承的复合故障诊断问题,深入研究了一种基于优化特征模态分解和快速谱相关的复合故障诊断方法。首先,通过理论分析,提出脉冲能量因子指标来实现特征模态分解的参数选择以及最优分量的选取;然后,基于快速谱相关原理设计谱相关... 针对滚动轴承的复合故障诊断问题,深入研究了一种基于优化特征模态分解和快速谱相关的复合故障诊断方法。首先,通过理论分析,提出脉冲能量因子指标来实现特征模态分解的参数选择以及最优分量的选取;然后,基于快速谱相关原理设计谱相关相对强度曲线和改进快速谱相关图,用于确定不同故障调制后对应的最优载波,对最优载波进行包络处理,从而分离轴承的复合故障特征,最终实现复合故障的准确性诊断。通过模拟故障试验和工程案例分析结果表明,该文所提方法相比于经验模态分解能够有效滤除噪声干扰,具有良好的鲁棒性,同时,避免了解卷积方法设定参数的缺陷,且与Autogram方法相比,能够有效分离复合故障特征,避免复合故障特征成分耦合。 展开更多
关键词 滚动轴承 复合故障 特征分离 特征模态分解 快速谱相关
在线阅读 下载PDF
参数优化FMD的滚动轴承早期故障诊断 被引量:1
13
作者 王晓真 彭勃 +1 位作者 王家忠 万书亭 《组合机床与自动化加工技术》 北大核心 2024年第6期131-134,共4页
由于滚动轴承早期故障信号特征微弱,特征模态分解(feature mode decomposition, FMD)分解性能受参数滤波器长度L和模态个数n的影响,提出一种参数优化FMD早期故障诊断方法。首先,基于平方包络谱基尼系数(square envelope spectrum gini i... 由于滚动轴承早期故障信号特征微弱,特征模态分解(feature mode decomposition, FMD)分解性能受参数滤波器长度L和模态个数n的影响,提出一种参数优化FMD早期故障诊断方法。首先,基于平方包络谱基尼系数(square envelope spectrum gini indix, SESGI)自适应确定FMD的滤波器长度L和模态个数n;其次,采用参数优化的FMD将信号分解为n个模态分量,并根据峭度值最大选择敏感模态分量;最后,对敏感模态分量进行包络分析,判断滚动轴承故障类型。仿真和实验结果表明,该方法可以自适应确定FMD最优参数组合,有效提取故障特征信息。通过与变分模态分解(variational mode decomposition, VMD)对比分析,参数优化FMD提取到的故障特征频率倍频较明显,具有更好的特征提取性能,能够实现滚动轴承故障的精确诊断。 展开更多
关键词 特征模态分解 特征提取 故障诊断 平方包络谱基尼系数
在线阅读 下载PDF
时变转速下基于IFMD的行星齿轮箱微弱故障诊断
14
作者 王朝阁 张奇奇 +3 位作者 周福娜 王冉 胡雄 李宏坤 《振动工程学报》 EI CSCD 北大核心 2024年第11期1980-1992,共13页
针对强背景噪声干扰且变转速下行星齿轮箱早期微弱故障特征难以被有效识别的问题,提出一种改进特征模态分解(Improved Feature Mode Decomposition,IFMD)的时变工况行星齿轮箱微弱故障诊断方法。对于特征模态分解算法中的关键输入参数... 针对强背景噪声干扰且变转速下行星齿轮箱早期微弱故障特征难以被有效识别的问题,提出一种改进特征模态分解(Improved Feature Mode Decomposition,IFMD)的时变工况行星齿轮箱微弱故障诊断方法。对于特征模态分解算法中的关键输入参数分解模态个数n、滤波器个数K和滤波器长度L需要依靠人为经验反复尝试而不具有自适应的问题,提出通过尺度空间谱划分来确定所需分解模态个数n;在此基础上,以谱基尼指数(Spectral Gini Index,SGI)作为目标函数,采用粒子群算法自动确定最佳的滤波器个数K和滤波器长度L。最优输入参数组合下,采用IFMD对故障信号进行最佳模态分解,并选取SGI值最大的分量作为敏感模态。从敏感分量的包络阶次谱中提取显著故障特征阶次来准确判别故障类型。通过变转速仿真信号和工程实验数据分析表明,相比PSO-VMD方法、MED方法、SGMD方法和快速谱峭度方法,所提方法能够更加清晰、全面地提取微弱故障信息,提高了时变工况下行星齿轮箱早期故障特征的表征能力和诊断精度。 展开更多
关键词 故障诊断 行星齿轮箱 时变转速工况 特征模态分解 微弱故障
在线阅读 下载PDF
基于VMD-MDE的柱塞泵磨损故障诊断研究 被引量:9
15
作者 曲全鹏 曲海军 张强 《机电工程》 CAS 北大核心 2021年第9期1202-1206,共5页
通过变分模态分解特征能量重构法(VMD)来实现对故障进行分析时,存在准确性不高的问题,针对这一问题,提出了一种通过变分模态分解特征能量重构法(VMD)和多尺度散布熵实现的柱塞泵滑靴磨损故障诊断方法。首先,对原始信号先进行了VMD分解,... 通过变分模态分解特征能量重构法(VMD)来实现对故障进行分析时,存在准确性不高的问题,针对这一问题,提出了一种通过变分模态分解特征能量重构法(VMD)和多尺度散布熵实现的柱塞泵滑靴磨损故障诊断方法。首先,对原始信号先进行了VMD分解,获得了能量余量;然后,设计了一种建立在特征能量占比(FER)基础上的变分模态分解特征能量重构法(VMD)和多尺度散布熵(MDE)的方法;最后,以柱塞泵故障诊断为研究对象,通过仿真分析方法,依次对柱塞泵在正常状态与滑靴端面磨损为0.1 mm、0.2 mm、0.3 mm状态下的情况进行了分析。仿真及研究结果表明:在逐渐增加时间尺度的过程中,粗粒化序列的随机性和复杂性都明显下降;故障程度增大后,形成了更加规律的变化过程;与DE、MSE和MFE相比,该方法的计算速度更快,分离效果更好;ELM相对SVM的训练时间缩短了12.5%,同时测试精度提升了17%;相对于其他方法,采用该方法诊断柱塞泵滑靴磨损故障时获得了更快的分类速率与更高的准确性,提高了故障诊断效率。 展开更多
关键词 柱塞泵 磨损振动 信号提取 变分模态分解特征能量重构法 特征能量占比 多尺度散布熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部