期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
基于特征模态分解及多尺度模糊散布熵的滚动轴承故障诊断
1
作者 梁翔宇 胡业林 +1 位作者 马向阳 宋晓 《科学技术与工程》 北大核心 2025年第1期176-185,共10页
针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)... 针对复杂环境下的滚动轴承故障信息有效提取与辨识问题,提出一种基于特征模态分解(feature mode decomposition,FMD)及多尺度模糊散布熵(multiscale fuzzy dispersion entropy,MFDE)和斑马优化算法(zebra optimization algorithm,ZOA)优化支持向量机的滚动轴承故障诊断方法。为了解决FMD中关键参数不具有自适应性这一问题,以最小包络熵作为目标函数,采用白鲸优化算法(beluga whale optimization,BWO)优化FMD寻找最优参数组合,实现对故障信号的最优分解;引入多尺度模糊散布熵构建分解后不同模态下的特征向量;最后,将特征向量输入支持向量机中进行训练和识别,通过公开数据集和自制实验平台数据集验证了提出方法的有效性。 展开更多
关键词 特征模态分解 多尺度模糊散布熵 支持向量机 滚动轴承 故障诊断
在线阅读 下载PDF
基于鲸鱼算法优化特征模态分解的滚动轴承复合故障诊断方法
2
作者 徐帅 张超 《机电工程》 北大核心 2025年第8期1440-1449,共10页
针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值... 针对特征模态分解(FMD)在处理复合故障时参数难以选取的问题,提出了一种基于鲸鱼优化算法(WOA)优化FMD的滚动轴承复合故障诊断方法。首先,基于信号频谱能量和模态分布,设计了一个综合评价指标——自适应加权频域峰度与交叉信息熵的比值,并将其作为目标函数,该指标不仅能够精准捕捉信号的故障特征,还能在分解过程中平衡各模态之间的关系;然后,利用WOA对FMD中的两个关键参数(即模态数n和滤波器长度L)进行了自适应优化,以调整到最佳值,确保FMD分解结果既能充分提取故障特征,又能有效抑制噪声干扰;最后,基于内蒙古科技大学机械工程学院的HZXT-DS-003双跨转子滚动轴承试验平台,构建了涵盖多种复合故障模式的轴承数据集,并进行了实验分析。仿真与实验研究结果表明:该方法在噪声抑制方面表现出色,能够有效识别复合故障中相对较弱的故障特征频率,从而显著提升了滚动轴承复合故障诊断的准确性和可靠性;此外,通过将该方法与对比方法进行了多方面的定性和定量对比分析,进一步验证了该方法的优越性。可见基于WOA优化FMD的故障诊断方法可以对滚动轴承复合故障进行有效诊断。 展开更多
关键词 滚动轴承故障诊断 特征模态分解 鲸鱼优化算法 自适应加权频域峰度与交叉信息熵比值 故障特征提取 噪声干扰抑制
在线阅读 下载PDF
基于参数优化特征模态分解的强背景噪声下滚动轴承故障诊断 被引量:4
3
作者 施亦非 黄宇峰 +2 位作者 王锋 石佳 张洁 《振动与冲击》 EI CSCD 北大核心 2024年第21期107-115,共9页
为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选... 为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选取的问题,以平方包络谱峭度(kurtosis of the square envelope spectrum,KSES)为权值,结合平方包络谱基尼系数(Gini index of the square envelope spectrum,GISES)构建加权平方包络谱基尼系数(weighted Gini index of the square envelope spectrum,WGISES)作为目标函数,通过优化算法确定FMD的最优参数组合;其次,为解决FMD的主模态分量难以选取的问题,通过计算所分解模态分量的KSES值选取主模态分量;最后,通过包络谱分析实现故障诊断。经仿真信号和实测信号分析,验证了POFMD在强背景噪声下滚动轴承故障诊断中的有效性。与变分模态分解、最大相关峭度解卷积和谱峭度相比,POFMD有更优越的故障特征提取性能。 展开更多
关键词 特征模态分解(FMD) 包络谱峭度(KSES) 基尼系数 滚动轴承 故障诊断
在线阅读 下载PDF
一种改进特征模态分解的滚动轴承复合故障特征提取方法 被引量:1
4
作者 周小龙 李佳宏 +3 位作者 王相坤 王昊天 杨知伦 曹霖霖 《制造技术与机床》 北大核心 2024年第5期42-49,共8页
针对滚动轴承故障信号非平稳、多分量并伴随强背景噪声,导致其复合故障特征难以有效分离的问题,提出一种改进特征模态分解(feature mode decomposition,FMD)的特征提取方法。采用FMD将滚动轴承复合故障信号分解为一系列模态分量,对影响... 针对滚动轴承故障信号非平稳、多分量并伴随强背景噪声,导致其复合故障特征难以有效分离的问题,提出一种改进特征模态分解(feature mode decomposition,FMD)的特征提取方法。采用FMD将滚动轴承复合故障信号分解为一系列模态分量,对影响分解精度的关键参数特性进行研究,提出了相关参数选取方法。从信号间关联程度和能量角度出发,通过综合评价因子算法选择对故障敏感的模态分量,并经包络解调获取敏感模态分量的包络谱以提取故障特征频率,实现滚动轴承复合故障的诊断。通过仿真信号及实测信号分析,并同变分模态分解(variational mode decomposition,VMD)方法进行比较。结果表明,所提方法可有效抑制噪声干扰影响,提升滚动轴承故障特征信息获取能力,实现滚动轴承复合故障的有效诊断。 展开更多
关键词 特征模态分解 敏感模态分量 滚动轴承 复合故障 特征提取
在线阅读 下载PDF
几种矩形单元的特征模态分析
5
作者 王选民 刘光栋 《计算力学学报》 CAS CSCD 1998年第2期245-248,共4页
对双线性矩形单元、带转角自由度二次、三次矩形单元的特征模态进行了分析,通过特征模态对这些单元的性态进行了比较。
关键词 矩形单元 有限元 特征模态 平面问题 结构振动
在线阅读 下载PDF
基于参数自适应特征模态分解的滚动轴承故障诊断方法 被引量:20
6
作者 鄢小安 贾民平 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第10期252-259,共8页
针对强背景噪声下轴承故障信息难以有效提取的问题,提出一种基于参数自适应特征模态分解的滚动轴承故障诊断方法。首先,为了克服原始特征模态分解(FMD)需要依赖人为经验设定关键参数而不具有自适应性的缺点,提出基于平方包络谱特征能量... 针对强背景噪声下轴承故障信息难以有效提取的问题,提出一种基于参数自适应特征模态分解的滚动轴承故障诊断方法。首先,为了克服原始特征模态分解(FMD)需要依赖人为经验设定关键参数而不具有自适应性的缺点,提出基于平方包络谱特征能量比(FER-SES)的网格搜索方法自动地确定FMD的模态个数n和滤波器长度L;随后,采用参数优化的FMD将原轴承振动信号划分为n个模态分量,并选取具有最大FER-SES的模态分量为敏感模态分量;最后,通过计算敏感模态分量的平方包络谱来提取故障特征频率,从而判别轴承故障类型。通过仿真信号和工程案例分析验证了提出方法的有效性。与变分模态分解(VMD)和谱峭度方法(SK)相比,提出方法具有更好的故障特征提取性能。 展开更多
关键词 特征模态分解 平方包络谱特征能量比 滚动轴承 故障诊断
在线阅读 下载PDF
特征模态函数双谱分析在叶片裂纹识别中的应用 被引量:2
7
作者 靳子洋 陆永耕 +1 位作者 张彬 姚晓龙 《噪声与振动控制》 CSCD 2016年第1期153-156,共4页
针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含... 针对叶片裂纹故障振动信号特征,提出特征模态函数的双谱分析法,首先利用经验模态分解(Empirical Mode Decomposition,EMD)对振动信号进行自适应滤波分解,产生一系列不同时间尺度的特征模态函数(Intrinsic Mode Function,IMF),然后对含有高频信号的高阶IMF分量进行重构,利用双谱提取叶片裂纹的振动信号特征。通过仿真信号和实验分析,验证叶片裂纹产生的高频冲击对叶片振动信号高频部分双谱的影响,证明IMF分量双谱分析的有效性,为风电叶片正常状态监测提供依据。 展开更多
关键词 振动与波 叶片裂纹 特征模态函数 经验模态分解 双谱分析
在线阅读 下载PDF
多模态特征融合的RGB-T目标跟踪网络
8
作者 金静 刘建琴 翟凤文 《光学精密工程》 北大核心 2025年第12期1940-1954,共15页
近年来,RGB-T跟踪方法因可见光与热红外图像的互补特性而在视觉跟踪领域得到广泛应用。然而,现有方法在模态互补信息利用方面仍存在局限,特别是基于Transformer的算法缺乏模态间的直接交互,难以充分挖掘RGB和TIR模态的语义信息。针对这... 近年来,RGB-T跟踪方法因可见光与热红外图像的互补特性而在视觉跟踪领域得到广泛应用。然而,现有方法在模态互补信息利用方面仍存在局限,特别是基于Transformer的算法缺乏模态间的直接交互,难以充分挖掘RGB和TIR模态的语义信息。针对这些问题,提出了一种多模态特征融合的RGB-T目标跟踪网络(Multi-Modal Feature Fusion Tracking Network for RGB-T,MMFFTN)。该网络首先在骨干网络提取初步特征后,引入通道特征融合模块(Channel Feature Fusion Module,CFFM),实现RGB和TIR通道特征的直接交互与融合。其次,针对RGB和TIR模态差异可能导致的融合效果不理想问题,设计了跨模态特征融合模块(Cross-Modal Feature Fusion Module,CMFM),通过自适应融合策略进一步融合RGB和TIR的全局特征,以提升跟踪的准确性。对本文提出的跟踪模型在GTOT,RGBT234和LasHeR三个数据集上进行了详细的实验评估。实验结果表明,与当前先进的基于Transformer的跟踪器ViPT相比,MMFFTN在成功率(Success Rate)和精确率(Precision Rate)上分别提升了3.0%和4.7%;与基于Transformer的跟踪器SDSTrack相比,成功率和精确率分别提升了2.4%和3.3%。 展开更多
关键词 RGB-T目标跟踪 TRANSFORMER 通道特征融合 模态特征融合
在线阅读 下载PDF
多模态分级特征映射与融合表征方法研究 被引量:1
9
作者 郭小宇 马静 陈杰 《计算机工程与应用》 北大核心 2025年第6期171-182,共12页
多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型... 多模态特征表征是多模态任务的基础。为解决多模态特征表征方法融合层次单一、未能充分映射不同模态间的关联关系的问题,提出了一种多模态分级特征映射与融合表征方法。该方法在文本模型RoBERTa与图像模型DenseNet的基础上,从两个模型的中间层抽取由低级别到高级别的特征,基于特征重用的思想映射与融合文本与图像模态不同级别的特征,捕捉文本与图像模态之间的内部关联,充分融合两种模态之间的特征。将分级特征映射与融合表征馈入分类器,应用于多模态舆情的情感分类中,同时将构建的表征方法与基线表征方法进行对比分析。实验结果表明,提出的表征方法在微博舆情和MVSA-Multiple数据集上的情感分类性能均超越了所有基线模型,其中在微博数据集上F1值提升了0.0137,在MVSA-Multiple数据集上F1值提升了0.0222。图像特征能够提升文本单模态特征下的情感分类准确率,但是其提升程度与融合策略密切相关;多模态分级特征映射与融合表征方法能够有效映射文本与图像特征之间的关系,提升多模态舆情的情感分类效果。 展开更多
关键词 模态特征融合 分级特征 映射与融合 情感分类 特征表示
在线阅读 下载PDF
多模态特征增强的双层融合知识推理方法 被引量:1
10
作者 荆博祥 王海荣 +1 位作者 王彤 杨振业 《计算机科学与探索》 北大核心 2025年第2期406-416,共11页
现有的多模态知识推理方法大多采用拼接或注意力的方式,将预训练模型提取到的多模态特征直接进行融合,往往忽略了不同模态之间的异构性和交互的复杂性。为此,提出了一种多模态特征增强的双层融合知识推理方法。结构信息嵌入模块采用自... 现有的多模态知识推理方法大多采用拼接或注意力的方式,将预训练模型提取到的多模态特征直接进行融合,往往忽略了不同模态之间的异构性和交互的复杂性。为此,提出了一种多模态特征增强的双层融合知识推理方法。结构信息嵌入模块采用自适应图注意力机制筛选并聚合关键的邻居信息,用来增强实体和关系嵌入的语义表达;多模态嵌入信息模块使用不同的注意力机制关注不同模态数据的独有特征,以及多模态数据间的共性特征,利用共性特征的互补信息进行模态交互,以减少模态间异构性差异;多模态特征融合模块采用将低秩多模态特征融合和决策融合相结合的双层融合策略,实现了多模态数据在模态间和模态内的动态复杂交互,并综合考虑每种模态在推理中的贡献度,得到更全面的预测结果。为了验证方法的有效性,分别在FB15K-237、DB15K和YAGO15K数据集上进行了实验。结果表明:该方法相比多模态推理方法,在FB15K-237数据集上MRR和Hits@1分别平均提升3.6%和2.2%;相比单模态推理方法,MRR和Hits@1分别平均提升13.7%和14.6%。 展开更多
关键词 模态知识图谱 链接预测 知识推理 模态特征融合
在线阅读 下载PDF
结合跨模态特征激励与双分支交叉注意力融合的左心房疤痕分割方法
11
作者 阮东升 施哲彬 +2 位作者 王嘉辉 李杨 蒋明峰 《电子与信息学报》 北大核心 2025年第5期1596-1608,共13页
左心房疤痕的分布情况与严重程度能够为房颤的生理病理学研究提供重要信息,因此,实现左心房疤痕的自动化分割对房颤的临床诊断与治疗有着重要意义。但由于左心房疤痕具有形状多样化、目标小、分布离散等特点,现有的左心房疤痕分割方法... 左心房疤痕的分布情况与严重程度能够为房颤的生理病理学研究提供重要信息,因此,实现左心房疤痕的自动化分割对房颤的临床诊断与治疗有着重要意义。但由于左心房疤痕具有形状多样化、目标小、分布离散等特点,现有的左心房疤痕分割方法往往难以取得好的分割效果。该文利用疤痕通常分布在左心房壁上的先验知识,提出一种基于左心房边界特征增强的左心房疤痕分割方法,通过提出的跨模态特征激励模块与双分支交叉注意力融合模块在U型网络的编码器与瓶颈层分别对核磁共振图像与左心房边界符号距离图进行特征增强引导与深层语义信息融合增强,实现从特征层面提高模型对左心房边界特性信息的关注度。该文所提分割模型在LAScarQS2022数据集上进行验证,分割结果评估明显优于当前主流的分割方法。Dice分数和准确率相比基线网络分别提升了4.14%和6.37%。 展开更多
关键词 模态特征 深度学习 特征增强 注意力机制 左心房疤痕分割
在线阅读 下载PDF
基于多模态特征融合的车辆网络波束赋形方法
12
作者 聂佳莉 崔原豪 +3 位作者 张迪 张荣辉 穆俊生 景晓军 《雷达学报(中英文)》 北大核心 2025年第4期994-1004,共11页
波束赋形技术通过向特定方向发射信号,提高了接收信号的功率。然而,在高速动态的车辆网络场景下,频繁的信道状态更新与波束调整导致系统开销过大;波束与用户位置难以实时对齐,易出现错位现象,影响通信稳定性;复杂路况中的遮挡和信道衰... 波束赋形技术通过向特定方向发射信号,提高了接收信号的功率。然而,在高速动态的车辆网络场景下,频繁的信道状态更新与波束调整导致系统开销过大;波束与用户位置难以实时对齐,易出现错位现象,影响通信稳定性;复杂路况中的遮挡和信道衰落进一步限制了波束赋形的效果。为了解决上述问题,该文提出了一种基于卷积神经网络和注意力机制模型的多模态特征融合波束赋形方法,以实现感知辅助的高可靠通信。模型首先对传感器采集的雷达、激光雷达数据分别定制数据转换和标准化策略,解决数据异构问题。然后使用三维卷积残差块提取多层次高阶多模态特征后,利用注意力机制模型融合特征并预测最佳波束,实现通信性能的优化。实验结果表明,该文所提方法在高速场景下可达到接近90%的平均Top-3波束预测精度,相比单模态方案性能显著提升,验证了其在提升通信性能和可靠性方面的优越性。 展开更多
关键词 感知辅助通信 模态特征融合 雷达信号处理 波束赋形 注意力机制
在线阅读 下载PDF
基于多模态特征对齐的弱对齐RGBT显著目标检测
13
作者 刘成壮 翟素兰 +1 位作者 刘海庆 王鲲鹏 《计算机科学》 北大核心 2025年第7期142-150,共9页
可见光和热红外(RGBT)显著目标检测(SOD)旨在从可见光和热红外图像中识别共同的显著物体。然而,现有技术大多在完全对齐的图像对上进行训练,忽略了实际成像过程中由传感器差异造成的“弱对齐”问题,即同一物体在不同模态中虽然结构相关... 可见光和热红外(RGBT)显著目标检测(SOD)旨在从可见光和热红外图像中识别共同的显著物体。然而,现有技术大多在完全对齐的图像对上进行训练,忽略了实际成像过程中由传感器差异造成的“弱对齐”问题,即同一物体在不同模态中虽然结构相关,但是它们的位置、尺度存在差异。因此,如果不经对齐处理,直接使用弱对齐RGBT图像训练模型,会导致检测性能严重下降。为应对这一挑战,提出了一个多模态特征对齐融合网络(AFNet),专门针对弱对齐RGBT SOD。该网络由3个主要模块组成:分布对齐模块(DAM)、注意力引导的可变形卷积对齐模块(AGDCM)和交叉融合模块(CAM)。DAM基于最优传输理论,使热红外和RGB特征的分布尽可能接近,实现特征的初步对齐。AGDCM基于可变形卷积,在学习特征偏移量的过程中引入注意力权重,使不同的区域可以学习到适合自身的偏移量,实现多模态特征的精准对齐。CAM通过交叉注意力机制融合对齐后的特征,增强融合特征的判别能力并提高计算效率。通过在对齐和弱对齐数据集上进行大量实验,证明了所提方法的高效性。 展开更多
关键词 弱对齐RGBT图像 显著目标检测 模态特征对齐 模态特征融合 注意力机制
在线阅读 下载PDF
基于多模态特征集成算法的CID患者识别研究
14
作者 周文俊 欧静 +1 位作者 龚亮 彭博 《计算机应用与软件》 北大核心 2025年第4期142-149,共8页
目前,慢性失眠障碍(CID)患者数量逐年增加,及时诊断能有效避免CID患者症状加重。利用磁共振成像(MRI)技术结合分类算法可对CID患者进行识别。传统MRI数据分类算法基于单模态特征SVM算法进行,但该算法对CID患者数据分类效果不佳,因此,提... 目前,慢性失眠障碍(CID)患者数量逐年增加,及时诊断能有效避免CID患者症状加重。利用磁共振成像(MRI)技术结合分类算法可对CID患者进行识别。传统MRI数据分类算法基于单模态特征SVM算法进行,但该算法对CID患者数据分类效果不佳,因此,提出一种多模态特征集成算法进行CID患者识别以取得更好效果。多模态特征集成算法基于静息态功能MRI技术映射多模态特征,利用集成算法进行分类对比实验。实验结果显示,相较于传统MRI分类算法,多模态特征集成算法对CID患者数据分类效果更好,能有效识别CID患者,进而进行相关医疗辅助诊断工作。 展开更多
关键词 慢性失眠 患者分类 MRI 模态特征 集成分类器
在线阅读 下载PDF
基于注意力机制和跨模态层级特征融合的群养肉牛个体质量估测
15
作者 宋平 杨颖 +3 位作者 刘刚 姚冲 李子若 毛天赐 《农业工程学报》 北大核心 2025年第10期221-231,共11页
为解决群养场景下肉牛个体质量称量复杂、精度低的问题,该研究提出了基于注意力机制和跨模态层级特征融合模型CMHFF-ResNet(cross-modal hierarchical feature fusion resnet)。首先,无接触式地采集俯视视角下日常活动的肉牛的RGB(red-g... 为解决群养场景下肉牛个体质量称量复杂、精度低的问题,该研究提出了基于注意力机制和跨模态层级特征融合模型CMHFF-ResNet(cross-modal hierarchical feature fusion resnet)。首先,无接触式地采集俯视视角下日常活动的肉牛的RGB(red-green-blue)图像与深度图像,使用引入定向边界框OBB(oriented bounding box)的YOLOv8网络对肉牛进行旋转目标检测和识别,精准定位群养场景中的个体目标;其次,以ResNet50为骨干网络构建双流估重模型,分别提取RGB和深度模态特征,并引入CBAM(convolutional block attention module)注意力机制以增强关键特征表达能力。设计跨模态的层级特征融合,有效结合RGB流和深度流的特征并充分利用浅层特征;第三,引入肉牛的身份信息便于网络学习肉牛身份与其体质量之间的对应关系,为优化模型效率,将全连接层替换为KAN(kolmogorov-arnold networks),显著减少参数量;最后,将双流的输出结果融合,回归肉牛体质量值。在试验中,构建了包含2546对RGB-D图像的数据集,包括2373对训练数据和173对验证数据。结果表明,CMHFF-ResNet在验证集上的平均绝对误差为14.19 kg。与基于RGB和深度的单流模型相比,双流模型在平均绝对误差上分别降低16.943%和26.133%。同时,该方法优于其他现有肉牛体质量估测方法:与多元线性回归、改进MobileNetv2模型、改进DenseNet201模型和改进跨模态特征融合模型CFF-ResNet相比,在平均绝对误差上分别减少57.233%、34.699%、24.761%和20.991%,提升了群养环境下肉牛个体质量估测的精度与泛化性,能够有效地学习跨模态的层级特征表示。该研究为大规模群养环境中肉牛个体质量的高精度估测提供了参考。 展开更多
关键词 模型 计算机视觉 目标检测 体质量估测 注意力机制 模态层级特征融合 双流网络
在线阅读 下载PDF
多模态特征影响下辟谣短视频互动效果研究:基于意见氛围中介视角
16
作者 付少雄 曾源来 邓胜利 《情报学报》 北大核心 2025年第4期466-481,共16页
短视频辟谣的关键在于提升辟谣信息互动效果。为此,分析辟谣短视频多模态特征对互动效果的影响,可为辟谣短视频辟谣效果的提升以及短视频平台内容生态治理提供依据。本研究面向社会认知理论,基于意见氛围中介视角,构建多模态特征影响下... 短视频辟谣的关键在于提升辟谣信息互动效果。为此,分析辟谣短视频多模态特征对互动效果的影响,可为辟谣短视频辟谣效果的提升以及短视频平台内容生态治理提供依据。本研究面向社会认知理论,基于意见氛围中介视角,构建多模态特征影响下辟谣短视频互动效果研究模型。通过抓取抖音短视频平台上2846条有效辟谣短视频数据,采用回归分析,结合情感分析、图像识别与中介效应检验,探究辟谣短视频的发布者头像、内容及标题特征如何影响用户意见氛围,进而分析意见氛围对互动效果的影响。回归分析结果表明,关于外部环境因素与用户群体状态,头像清晰度显著负向影响用户意见氛围,头像真实性、短视频主题、短视频时长、辟谣主体、标题长度及标题情感极性显著正向影响用户意见氛围;关于用户群体状态与群体行为反应,用户意见氛围显著正向影响短视频互动效果。在外部环境因素对群体行为反应的影响中,用户意见氛围发挥完全/部分中介作用。本研究以意见氛围为中介,关联辟谣短视频多模态特征与互动效果,明晰了辟谣短视频互动效果的影响因素,延展了辟谣短视频的研究视角,拓展了社会认知理论的研究情境,丰富了信息行为研究的理论与实践体系。 展开更多
关键词 辟谣短视频 模态特征 意见氛围 互动效果 社会认知理论
在线阅读 下载PDF
基于3D多模态卷积网络与跨模态特征集成的阿尔茨海默症分类
17
作者 朱厚元 郑乐乐 +5 位作者 商浩 臧雪峰 吴少琪 周广超 孙建德 乔建苹 《数据采集与处理》 北大核心 2025年第4期912-921,共10页
多模态神经影像技术为阿尔茨海默症(Alzheimer’s disease,AD)的早期精准诊断提供了重要的技术支撑。然而,由于不同模态神经影像数据在成像原理和特征表达上存在固有异质性,模态间的信息融合面临挑战。针对这一问题,提出了一种基于3D Re... 多模态神经影像技术为阿尔茨海默症(Alzheimer’s disease,AD)的早期精准诊断提供了重要的技术支撑。然而,由于不同模态神经影像数据在成像原理和特征表达上存在固有异质性,模态间的信息融合面临挑战。针对这一问题,提出了一种基于3D ResNet架构的多模态融合网络(Multi-modal fusion network,MFN),用于AD的早期辅助诊断。该方法首先采用3D ResNet网络分别提取T1加权和T2加权磁共振图像的特征表示,然后设计了一种创新的跨模态特征集成模块(Cross-modal feature integration module,CFIM)。相较于多模态数据直接串联,导致维度增长无法自适应调整模态权重的问题,CFIM采用分阶段融合策略,包括全局信息融合模块、局部特征学习模块和关键因素模块。最后,融合后的多模态特征通过全连接神经网络进行分类决策。相比早期拼接的固定权重叠加和后期融合的浅层聚合,该策略能更精准地筛选出疾病诊断相关的特征。通过在阿尔茨海默症神经影像倡议(ADNI)数据库上的实验结果表明,与现有方法相比,本文方法在AD分类任务中具有较高的准确率和显著优势,且消融实验进一步验证了各模块的有效性,为多模态神经影像分析提供了新的技术思路。 展开更多
关键词 阿尔茨海默症 3D多模态融合网络 核磁共振图像 模态特征集成模块 深度学习
在线阅读 下载PDF
rtTorTIM:基于多模态特征融合和Stacking集成学习的实时Tor流量识别方法
18
作者 王宇飞 刘强 +3 位作者 张唯贞 伍晓洁 李佳雯 王煜恒 《计算机工程与科学》 北大核心 2025年第2期238-246,共9页
以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融... 以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。 展开更多
关键词 Tor匿名网络 模态特征提取 实时流量识别 Stacking集成学习 机器学习
在线阅读 下载PDF
基于深度学习与D-S理论的多模态数据特征融合算法
19
作者 张燕 《吉林大学学报(理学版)》 北大核心 2025年第3期855-860,共6页
针对传统多模态数据特征融合算法存在融合效果较差的问题,提出一种基于深度学习与D-S(Dempster-Shafer)理论的多模态数据特征融合算法.首先,在深度学习框架内,采用受限Boltzmann机(RBM)对多模态数据进行训练,根据数据的特性和任务需求,... 针对传统多模态数据特征融合算法存在融合效果较差的问题,提出一种基于深度学习与D-S(Dempster-Shafer)理论的多模态数据特征融合算法.首先,在深度学习框架内,采用受限Boltzmann机(RBM)对多模态数据进行训练,根据数据的特性和任务需求,构建RBM模型结构进行多模态数据特征选择.其次,根据选取的特征选择计算同类模态数据之间的距离,确定信任函数,并设定阈值以删除异常数据,实现同类模态数据初步融合.最后,通过计算异类模态数据与不同等级特征之间的距离,确定异类数据的信任函数,结合D-S理论实现多模态数据特征融合.实验结果表明,该算法的纯度最高达1.0,标准化互信息最高达0.3,表明该算法可以获取精准的多模态数据特征融合结果. 展开更多
关键词 深度学习 D-S理论 模态数据特征 融合
在线阅读 下载PDF
基于多模态退化特征学习的水下图像增强
20
作者 熊庆博 陈磊 +1 位作者 梁晓莉 刘天须 《济南大学学报(自然科学版)》 北大核心 2025年第4期576-584,共9页
针对传统水下图像增强模型缺乏泛化性和灵活性的问题,本文中提出一种多模态退化图文对比(MD-CLIP)模型;通过对比学习训练MD-CLIP模型,MD-CLIP模型将水下低质量图像的图像特征及文本特征编码为多模态退化特征;使用交叉注意力机制和提示... 针对传统水下图像增强模型缺乏泛化性和灵活性的问题,本文中提出一种多模态退化图文对比(MD-CLIP)模型;通过对比学习训练MD-CLIP模型,MD-CLIP模型将水下低质量图像的图像特征及文本特征编码为多模态退化特征;使用交叉注意力机制和提示嵌入的方式将MD-CLIP模型所预测的多模态退化特征集成到水下图像增强模型中,调整模型的性能和泛化性,并用消融和对比实验验证多模态退化特征的有效性。结果表明:使用交叉注意力机制将MD-CLIP模型预测的多模态退化特征嵌入到水下图像增强模型中,模型的图像增强性能和泛化性能显著提高;MD-CLIP模型可作为一个通用的增强模块添加到其他的图像增强模型中。 展开更多
关键词 水下图像增强 模态退化特征 对比学习 交叉注意力机制
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部