为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选...为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选取的问题,以平方包络谱峭度(kurtosis of the square envelope spectrum,KSES)为权值,结合平方包络谱基尼系数(Gini index of the square envelope spectrum,GISES)构建加权平方包络谱基尼系数(weighted Gini index of the square envelope spectrum,WGISES)作为目标函数,通过优化算法确定FMD的最优参数组合;其次,为解决FMD的主模态分量难以选取的问题,通过计算所分解模态分量的KSES值选取主模态分量;最后,通过包络谱分析实现故障诊断。经仿真信号和实测信号分析,验证了POFMD在强背景噪声下滚动轴承故障诊断中的有效性。与变分模态分解、最大相关峭度解卷积和谱峭度相比,POFMD有更优越的故障特征提取性能。展开更多
以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融...以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。展开更多
文摘为准确提取被强背景噪声掩盖的滚动轴承故障信息,提出一种参数优化特征模态分解(parameter-optimized feature mode decomposition,POFMD)方法。首先,为解决特征模态分解(feature mode decomposition,FMD)方法的输入参数依赖人工经验选取的问题,以平方包络谱峭度(kurtosis of the square envelope spectrum,KSES)为权值,结合平方包络谱基尼系数(Gini index of the square envelope spectrum,GISES)构建加权平方包络谱基尼系数(weighted Gini index of the square envelope spectrum,WGISES)作为目标函数,通过优化算法确定FMD的最优参数组合;其次,为解决FMD的主模态分量难以选取的问题,通过计算所分解模态分量的KSES值选取主模态分量;最后,通过包络谱分析实现故障诊断。经仿真信号和实测信号分析,验证了POFMD在强背景噪声下滚动轴承故障诊断中的有效性。与变分模态分解、最大相关峭度解卷积和谱峭度相比,POFMD有更优越的故障特征提取性能。
文摘以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。