期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法 被引量:1
1
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
在线阅读 下载PDF
MPA-MMD方法在变转速齿轮箱振动信号特征提取中的应用 被引量:2
2
作者 张亢 麻云娇 +2 位作者 袁志文 陈向民 田泽宇 《振动与冲击》 EI CSCD 北大核心 2023年第24期127-135,共9页
变转速工况下齿轮箱振动信号的分量通常具有时频重叠和跨频带特征,分量直接分离非常困难。对此,引入一种新的多通道多分量分解(multichannel multipoint distribution, MMD)方法,并利用新型群体智能优化算法——海洋捕食者算法(marine p... 变转速工况下齿轮箱振动信号的分量通常具有时频重叠和跨频带特征,分量直接分离非常困难。对此,引入一种新的多通道多分量分解(multichannel multipoint distribution, MMD)方法,并利用新型群体智能优化算法——海洋捕食者算法(marine predators algorithm, MPA)求解MMD方法中的关键优化问题,进而提出了基于MPA优化的MMD(MPA-MMD)方法。MPA-MMD方法将每一个分量表示为一组加权特征向量的线性组合,因为不依赖时间尺度特征,所以特别适合分解具有时频重叠或跨频带特征的复杂信号。通过设置具有分量重叠、跨频带和波动性特征的加噪仿真信号,将MPA-MMD与基于其他优化算法的MMD,以及多通道变分模态分解进行了对比分析,结果表明MPA-MMD在分解效果、收敛性和抑噪性方面的优势;在此基础上,针对变转速工况下齿轮箱振动信号具有分量重叠和跨频带的复杂特征,将MPA-MMD应用于变转速工况下齿轮箱振动信号的特征提取,具有针对性的试验信号分析结果表明,MPA-MMD可直接准确地获得受转速影响的故障分量。 展开更多
关键词 通道多分量分解(MMD) 优化问题求解 海洋捕食者算法(MPA) 变转速工况 齿轮箱 故障特征提取
在线阅读 下载PDF
基于面向通道分组卷积网络的番茄主要器官实时识别 被引量:15
3
作者 周云成 许童羽 +1 位作者 邓寒冰 苗腾 《农业工程学报》 EI CAS CSCD 北大核心 2018年第10期153-162,共10页
番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合... 番茄器官的实时准确识别是实现自动采摘、靶向施药等自动化生产的关键。该文提出一种基于面向通道分组卷积网络的番茄主要器官实时识别网络模型,该模型直接用特征图预测番茄器官目标边界和类型。以统计可分性、计算速度等为判据,并结合样本扩增训练,分析了该网络和几种典型网络在番茄器官图像处理上的性能,以此筛选出识别网络的基础结构,在基础结构后面分别附加带dropout层的面向通道分组卷积模块和全卷积层作为识别网络的总体架构。试验结果表明:用面向通道分组卷积网络作为识别网络的基础结构,可在显著提高网络召回率、识别速度和精度的前提下,大幅降低模型的大小,该结构网络对花、果、茎识别的平均精度分别为96.52%、97.85%和82.62%,召回率分别为77.39%、69.33%和64.23%,识别速度为62帧/s;与YOLOv2相比,该文识别网络召回率提高了14.03个百分点,精度提高了2.51个百分点。 展开更多
关键词 图像识别 算法 实时识别 番茄 卷积神经网络 面向通道分组卷积 特征提取
在线阅读 下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
4
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 通道信号处理 故障分类识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部