期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多阶段特征提取的鱼类识别研究 被引量:2
1
作者 吕俊霖 陈作志 +2 位作者 李碧龙 蔡润基 高月芳 《南方水产科学》 CAS CSCD 北大核心 2024年第1期99-109,共11页
鱼类自动识别在海洋生态学、水产养殖等领域应用广泛。受光照变化、目标相似、遮挡及类别分布不均衡等因素影响,鱼类精准自动识别极具挑战性。提出了一种基于多阶段特征提取网络(Multi-stage Feature Extraction Network,MF-Net)模型进... 鱼类自动识别在海洋生态学、水产养殖等领域应用广泛。受光照变化、目标相似、遮挡及类别分布不均衡等因素影响,鱼类精准自动识别极具挑战性。提出了一种基于多阶段特征提取网络(Multi-stage Feature Extraction Network,MF-Net)模型进行鱼类识别。该模型首先对图片作弱增强预处理,以提高模型的计算效率;然后采用多阶段卷积特征提取策略,提升模型对鱼类细粒度特征的提取能力;最后通过标签平滑损失计算以缓解数据的不平衡性。为验证模型的性能,构建了一个500类、含32768张图片的鱼类数据集,所建模型在该数据集上的准确率达到86.8%,优于现有的主流目标识别方法。利用公开的蝴蝶数据集对该模型进行泛化性能验证,多组消融实验进一步验证了所提算法的有效性。 展开更多
关键词 鱼类识别 特征提取网络模型 标签平滑 长尾识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部