目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识...目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。展开更多
为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maxi...为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测。以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性。展开更多
传统的窃电检测方法大多直接在原始功率序列上构建模型,且没有同时考虑长时序列中的周期依赖关系以及周期之间的局部关联特征,限制了电力用户行为规律的深层挖掘。提出了一种综合采用时频模态融合和多尺度特征提取的高精度窃电检测模型...传统的窃电检测方法大多直接在原始功率序列上构建模型,且没有同时考虑长时序列中的周期依赖关系以及周期之间的局部关联特征,限制了电力用户行为规律的深层挖掘。提出了一种综合采用时频模态融合和多尺度特征提取的高精度窃电检测模型。采用经验模态分解方法,将原始信号分解为多个本征模态信号和一个残差信号,依据模糊熵值与皮尔逊相关系数找到同时包含局部信息与原始信号信息较多的模态,并将选择的模态信号与原信号进行拼接,这样既可以提升模型的维度,又能放大窃电用户与正常用户的局部差异;将拼接好的数据先输入卷积神经网络进行局部特征提取,并从提取到的特征输入多头自注意力机制神经网络模型中提取全局特征,从而实现多尺度特征提取,以增强模型提取特征的适应性。在公开数据集上的实验结果表明,所提模型的F1值达到了76.71%、召回率达到了87.99%、曲线下面积(area under the curve,AUC)值达到了93.11%,相比于现有方法均取得了明显提升。展开更多
文摘目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。
文摘为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测。以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性。
文摘传统的窃电检测方法大多直接在原始功率序列上构建模型,且没有同时考虑长时序列中的周期依赖关系以及周期之间的局部关联特征,限制了电力用户行为规律的深层挖掘。提出了一种综合采用时频模态融合和多尺度特征提取的高精度窃电检测模型。采用经验模态分解方法,将原始信号分解为多个本征模态信号和一个残差信号,依据模糊熵值与皮尔逊相关系数找到同时包含局部信息与原始信号信息较多的模态,并将选择的模态信号与原信号进行拼接,这样既可以提升模型的维度,又能放大窃电用户与正常用户的局部差异;将拼接好的数据先输入卷积神经网络进行局部特征提取,并从提取到的特征输入多头自注意力机制神经网络模型中提取全局特征,从而实现多尺度特征提取,以增强模型提取特征的适应性。在公开数据集上的实验结果表明,所提模型的F1值达到了76.71%、召回率达到了87.99%、曲线下面积(area under the curve,AUC)值达到了93.11%,相比于现有方法均取得了明显提升。