期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
基于多尺度特征提取的层次多标签文本分类方法 被引量:1
1
作者 武子轩 王烨 于洪 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期24-30,共7页
针对现有的特征提取方法忽略文本局部和全局联系的问题,提出了基于多尺度特征提取的层次多标签文本分类方法。首先,设计了多尺度特征提取模块,对不同尺度特征进行捕捉,更好地表示文本语义。其次,将层次特征嵌入文本表示中,得到具有标签... 针对现有的特征提取方法忽略文本局部和全局联系的问题,提出了基于多尺度特征提取的层次多标签文本分类方法。首先,设计了多尺度特征提取模块,对不同尺度特征进行捕捉,更好地表示文本语义。其次,将层次特征嵌入文本表示中,得到具有标签特征的文本语义表示。最后,在标签层次结构的指导下对输入文本构建正负样本,进行对比学习,提高分类效果。在WOS、RCV1-V2、NYT和AAPD数据集上进行对比实验,结果表明,所提模型在评价指标上表现出色,超过了其他主流模型。此外,针对层次分类提出层次Micro-F 1和层次Macro-F 1指标,并对模型效果进行了评价。 展开更多
关键词 层次多标签文本分类 尺度特征提取 对比学习 层次Micro-F 1 层次Macro-F 1
在线阅读 下载PDF
多尺度特征提取与融合注意力的坦克检测算法
2
作者 王先全 黎清华 +1 位作者 张雪秋 张雨珊 《激光杂志》 北大核心 2025年第8期74-81,共8页
针对传统坦克目标检测算法存在检测精度不足和误检等问题,提出一种基于改进YOLOv5s的目标检测算法。设计了一个能够提取多尺度特征的网络模块,对YOLOv5s中的C3模块进行优化,从而增强算法的特征提取能力;提出了一种基于空间金字塔池化改... 针对传统坦克目标检测算法存在检测精度不足和误检等问题,提出一种基于改进YOLOv5s的目标检测算法。设计了一个能够提取多尺度特征的网络模块,对YOLOv5s中的C3模块进行优化,从而增强算法的特征提取能力;提出了一种基于空间金字塔池化改进的特征提取模块,通过增加不同尺度的池化核,捕捉不同尺度的特征信息;引入并改进了倒置残差移动块(inverted Residual Mobile Block, iRMB),并将其中的注意力模块替换为大核可分离注意力模块(Large Separable Kernel Attention, LSKA),提高网络识别关键信息的能力。在坦克数据集上进行测试的结果表明,改进后的算法在平均精度上提高了3.2%,召回率提高了2.1%,mAP50提高了1.1%,mAP50-95提高了2.5%,证明改进后的YOLOv5s模型在坦克目标检测方面具有显著的性能优势。 展开更多
关键词 深度学习 目标检测 YOLOv5s 尺度特征提取 注意力机制
在线阅读 下载PDF
基于改进YOLOv7的多尺度特征提取绝缘子缺陷检测算法 被引量:1
3
作者 孙虹 郭乂菡 +3 位作者 雷经发 赵汝海 李永玲 张淼 《高压电器》 北大核心 2025年第6期102-112,共11页
针对绝缘子图像缺陷尺寸小、背景干扰因素多、难易样本不平衡等问题,提出了一种多尺度融合的YOLOv7(MSF-YOLOv7)算法,并将其应用于输电线路绝缘子的缺陷检测。首先,通过多尺度卷积块注意力模块(multi scale-convolution block attention... 针对绝缘子图像缺陷尺寸小、背景干扰因素多、难易样本不平衡等问题,提出了一种多尺度融合的YOLOv7(MSF-YOLOv7)算法,并将其应用于输电线路绝缘子的缺陷检测。首先,通过多尺度卷积块注意力模块(multi scale-convolution block attention module,MS-CBAM),深度聚合带有丰富语义信息的特征图,提升网络对不同尺度目标的检测性能;其次,在主干网络利用新开发的全局空间金字塔池化(global spatial pyramid pooling-fast,GSPPF)模块增加全局背景信息,以减轻复杂背景所带来的影响;针对样本分布不平衡的问题,引入Focaler-CIoU损失函数聚焦不同缺陷目标,加快模型的收敛速度。实验结果表明,文中提出的MSF-YOLOv7模型mAP50达到88.1%,精确度和召回率达到90.3%和83.1%,较YOLOv7算法分别提升了6.3%、7.9%和6.3%,同时参数量与浮点计算量分别降低了13.38%和2.95%。 展开更多
关键词 YOLOv7 绝缘子缺陷检测 尺度特征提取 注意力机制 空间金字塔池化
在线阅读 下载PDF
面向辐射源识别的多尺度特征提取与特征选择网络 被引量:1
4
作者 张顺生 丁宦城 王文钦 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第6期141-148,共8页
目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识... 目前应用于辐射源识别的卷积神经网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理有两种方式:一种方式是将其变换为图像,另一种方式是提取IQ时序数据的浅层特征。前一种方式会导致算法计算量大,而后一种方式会导致识别准确率低。针对上述问题,提出一种多尺度特征提取与特征选择网络。该网络以IQ信号为输入,经多尺度特征提取网络提取IQ信号的浅层特征和多尺度特征,采用特征选择网络降低多尺度特征的数据维度,通过自适应线性整流单元实现特征增强,使用单个全连接层对辐射源进行分类。在FIT/CorteXlab射频指纹识别数据集上,与ORACLE、CNN-DLRF和IQCNet对比实验表明,所提网络在一定程度上提高了识别准确率,降低了计算量。 展开更多
关键词 辐射源识别 IQ信号 尺度特征提取 特征选择
在线阅读 下载PDF
基于多尺度特征提取的IES多元负荷短期联合预测 被引量:6
5
作者 沈赋 刘思蕊 +3 位作者 徐潇源 王健 单节杉 翟苏巍 《高电压技术》 EI CAS CSCD 北大核心 2024年第7期2918-2930,共13页
为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maxi... 为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法。首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测。以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性。 展开更多
关键词 联合预测 尺度特征提取 综合能源系统 多元负荷 多任务学习 雪消融优化器
在线阅读 下载PDF
基于时频域多维特征提取的用户异常用电行为检测
6
作者 李子凯 岳宝强 +3 位作者 杨波 周忠堂 王春宝 焦润海 《电网与清洁能源》 北大核心 2025年第5期58-67,共10页
传统的窃电检测方法大多直接在原始功率序列上构建模型,且没有同时考虑长时序列中的周期依赖关系以及周期之间的局部关联特征,限制了电力用户行为规律的深层挖掘。提出了一种综合采用时频模态融合和多尺度特征提取的高精度窃电检测模型... 传统的窃电检测方法大多直接在原始功率序列上构建模型,且没有同时考虑长时序列中的周期依赖关系以及周期之间的局部关联特征,限制了电力用户行为规律的深层挖掘。提出了一种综合采用时频模态融合和多尺度特征提取的高精度窃电检测模型。采用经验模态分解方法,将原始信号分解为多个本征模态信号和一个残差信号,依据模糊熵值与皮尔逊相关系数找到同时包含局部信息与原始信号信息较多的模态,并将选择的模态信号与原信号进行拼接,这样既可以提升模型的维度,又能放大窃电用户与正常用户的局部差异;将拼接好的数据先输入卷积神经网络进行局部特征提取,并从提取到的特征输入多头自注意力机制神经网络模型中提取全局特征,从而实现多尺度特征提取,以增强模型提取特征的适应性。在公开数据集上的实验结果表明,所提模型的F1值达到了76.71%、召回率达到了87.99%、曲线下面积(area under the curve,AUC)值达到了93.11%,相比于现有方法均取得了明显提升。 展开更多
关键词 窃电检测 模态选择 时频分析 深度学习 尺度特征提取
在线阅读 下载PDF
基于层次化多尺度特征融合的金属缺陷分类模型
7
作者 李季桐 刘杰 +1 位作者 杨娜 王子宁 《仪器仪表学报》 北大核心 2025年第3期206-218,共13页
金属缺陷检测作为工业质量控制的关键环节,其检测精度直接影响制造业智能化进程。针对现有特征融合模块存在特征信息丢失、跨尺度信息交互不足以及识别准确率低等问题,提出一种基于层次化多尺度特征融合的分类模型。该模型通过融合Swin ... 金属缺陷检测作为工业质量控制的关键环节,其检测精度直接影响制造业智能化进程。针对现有特征融合模块存在特征信息丢失、跨尺度信息交互不足以及识别准确率低等问题,提出一种基于层次化多尺度特征融合的分类模型。该模型通过融合Swin Transformer与ConvNeXt两种网络架构的互补优势,构建了具有层次化感知能力的特征学习网络。其中,Swin Transformer采用移位窗口机制和多级自注意力机制有效捕获全局特征,ConvNeXt通过深度可分离卷积和高效卷积操作精准提取局部特征。为实现全局与局部的高效融合,创新性地设计自适应层次特征融合层,该层采用通道注意力机制、空间注意力机制和多尺度融合策略,实现全局与局部特征在多层次上的有效融合,同时在该层中增加多层倒残差融合模块,通过动态调整提取特征信息,以确保特征融合的精准性与可靠性。为验证模型的有效性,在公开NEU-DET和GC10-DET数据集上进行实验,准确率分别达到99.6%和96.9%。为验证模型的泛化性,在自建数据集上进行实验,准确率达到99.8%,与目前主流算法ConvNeXt、Swin transformer、VGG16、ResNet34模型相比,准确率分别提升3.4%、2.3%、4.3%、2.7%。实验结果表明,HMFF模型在金属缺陷检测领域具有更显著的分类准确性和鲁棒性,为工业场景下的高精度缺陷检测提供了新的研究方法。 展开更多
关键词 Swin Transformer ConvNeXt 缺陷分类 尺度特征提取 自适应层次特征融合 多层倒残差连接
在线阅读 下载PDF
基于非线性尺度空间与极坐标分布熵的GIS局放特征提取方法 被引量:2
8
作者 钱庆林 孙炜昊 +3 位作者 王真 路永玲 李玉杰 江秀臣 《电网技术》 EI CSCD 北大核心 2024年第8期3525-3533,I0155,共10页
气体绝缘组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)缺陷类型的准确识别对电力设备的状态评估与故障诊断至关重要,为了解决PD模式识别中特征提取准确性不足的问题,该文提出一种基于极坐标分布熵优化的非线... 气体绝缘组合电器(gas insulated switchgear,GIS)局部放电(partial discharge,PD)缺陷类型的准确识别对电力设备的状态评估与故障诊断至关重要,为了解决PD模式识别中特征提取准确性不足的问题,该文提出一种基于极坐标分布熵优化的非线性尺度空间特征(KAZE)提取方法。首先,对光、电单参量图谱进行非下采样轮廓波变换(non-subsampled contourlet transform,NSCT),得到包含信息更丰富的光电融合图谱;然后,利用KAZE算法提取图谱典型特征点,并依据相位、幅值、尺度信息将特征点发散至极坐标,提取子区域分布熵构成特征向量;最后,将特征信息带入经自适应增强算法(Adaboost)优化的长短期记忆网络(long short-term memory,LSTM)进行模式识别验证,并与KAZE法、统计参数法、卷积神经网络(convolutional neural networks,CNN)进行对比。结果表明,该文提出的特征提取方法在不同训练集分布下均可达到较高的识别率,最高可达91%,相较于统计参数法、CNN分别提升8.8%和4.4%,可以为提高GIS局部放电特征提取准确性提供参考。 展开更多
关键词 气体绝缘组合电器 局部放电 非线性尺度空间特征提取 图像融合 分布熵 模式识别
在线阅读 下载PDF
基于多尺度特征提取-改进天鹰算法-长短时神经网络的有载分接开关故障诊断方法 被引量:1
9
作者 龚禹璐 崔龙飞 +5 位作者 王典浪 陈静 须雷 皮天满 谢正波 杨继翔 《现代电力》 北大核心 2024年第4期793-800,共8页
为实现有载分接开关(on-load tap changer)在复合故障下的精准故障诊断,提出一种基于多尺度特征提取与改进天鹰算法(improved aquila optimizer,IAO)和长短时记忆神经网络(long short-term memory networks,LSTM)的变压器OLTC故障诊断... 为实现有载分接开关(on-load tap changer)在复合故障下的精准故障诊断,提出一种基于多尺度特征提取与改进天鹰算法(improved aquila optimizer,IAO)和长短时记忆神经网络(long short-term memory networks,LSTM)的变压器OLTC故障诊断方法。首先提取OLTC振动信号时域尺度、频域尺度和能量熵尺度特征组成特征向量;通过混合初始化策略和精英解保留策略对天鹰优化算法(aquila optimizer,AO)进行改进,以提高收敛性;利用改进天鹰算法对LSTM的隐含层节点数和学习率进行优化,得到最优LSTM模型;以单一故障和复合故障融合特征向量为输入,以故障状态作为输出,在最优网络模型中训练,完成后进行故障诊断。结果表明,文中所述方法平均准确率达97.2%,适用于OLTC的故障诊断。 展开更多
关键词 有载分接开关 尺度特征提取 优化LSTM神经网络 改进天鹰算法 故障诊断
在线阅读 下载PDF
基于多尺度特征提取的Kalman滤波跟踪 被引量:18
10
作者 孔军 汤心溢 +2 位作者 蒋敏 刘士建 李丹 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第5期446-450,共5页
针对波动性较大目标跟踪,传统Kalman滤波算法鲁棒性和实时性不足,提出一种基于多尺度特征提取的Kalman跟踪算法.前帧目标区域特征点匹配出后续帧目标区域特征点,并以后者特征点为中心,建立搜索区域,避免了遍历整幅后续帧图像,快速地为Ka... 针对波动性较大目标跟踪,传统Kalman滤波算法鲁棒性和实时性不足,提出一种基于多尺度特征提取的Kalman跟踪算法.前帧目标区域特征点匹配出后续帧目标区域特征点,并以后者特征点为中心,建立搜索区域,避免了遍历整幅后续帧图像,快速地为Kalman滤波方程状态后验值提供了稳定的观测信号和观测残差.实验证明,这种作为约束条件引入传统的Kalman滤波方程的多尺度特征提取技术,克服了传统Kalman滤波时间较长,易发散的缺陷,从而使其有着良好的收敛性. 展开更多
关键词 目标跟踪 尺度特征提取 KALMAN滤波 收敛
在线阅读 下载PDF
融合多尺度特征和注意力机制的超声甲状腺结节分割
11
作者 赵欣 黎红豆 王洪凯 《声学技术》 CSCD 北大核心 2024年第5期668-676,共9页
针对目前超声影像下甲状腺结节分割不够精准的问题,提出一种融合多尺度特征和注意力机制的超声甲状腺结节分割方法。该模型编码设计了多感受野通道选择模块,通过核心选择注意力对多个不同感受野的特征进行自适应加权组合,使包含目标的... 针对目前超声影像下甲状腺结节分割不够精准的问题,提出一种融合多尺度特征和注意力机制的超声甲状腺结节分割方法。该模型编码设计了多感受野通道选择模块,通过核心选择注意力对多个不同感受野的特征进行自适应加权组合,使包含目标的感受野通道占据主导。同时,设计自适应全局上下文模块自适应地提取瓶颈层多个尺度的全局上下文特征,以实现对瓶颈层高级语义的有效编码。此外,设计双注意力引导模块增强编解码器对等层之间的特征融合,以减少上采样过程中的信息损失。在公开的超声甲状腺结节数据集上进行实验,结果表明,文中所提方法优于其他对比网络,能更加精准地分割出甲状腺结节,有效提升了甲状腺结节的分割性能。 展开更多
关键词 深度学习 甲状腺结节 超声图像分割 尺度特征提取 注意力机制
在线阅读 下载PDF
变尺度特征提取在数控机床状态识别中的应用 被引量:2
12
作者 黄强 刘鑫 张晓 《机床与液压》 北大核心 2010年第10期83-84,8,共3页
正确识别数控机床从正常到故障之间的演化过程,对掌握机床运行状态、保证加工精度具有重要意义。提出采用变尺度小波包特征提取方法以提高状态识别的准确性,并以数控车床主轴轴承磨损研究为例,将此方法与传统方法进行了对比分析。仿真... 正确识别数控机床从正常到故障之间的演化过程,对掌握机床运行状态、保证加工精度具有重要意义。提出采用变尺度小波包特征提取方法以提高状态识别的准确性,并以数控车床主轴轴承磨损研究为例,将此方法与传统方法进行了对比分析。仿真和实验研究表明:变尺度小波包特征提取方法能有针对性地提取蕴含更多状态信息的振动信号特征用于状态识别,在192组测试样本中,变尺度特征提取方法的识别准确率达到98.44%,较传统方法有明显提高。 展开更多
关键词 数控机床 状态识别 尺度特征提取
在线阅读 下载PDF
基于多尺度特征提取的多导联心跳信号分类 被引量:2
13
作者 张繁 尹鑫 +1 位作者 徐宇扬 郝鹏翼 《图学学报》 CSCD 北大核心 2021年第4期581-589,共9页
心电图(ECG)是临床上诊断心脏疾病的重要依据,从中提取关键、有效的特征是自动诊断系统的关键。而现今多数研究仅使用单导联或双导联数据,提取的特征不够全面,无法很好地区分不同心跳中的细微差别。为了获得更加全面的特征和更优异的分... 心电图(ECG)是临床上诊断心脏疾病的重要依据,从中提取关键、有效的特征是自动诊断系统的关键。而现今多数研究仅使用单导联或双导联数据,提取的特征不够全面,无法很好地区分不同心跳中的细微差别。为了获得更加全面的特征和更优异的分类表现,本文提出了基于多尺度特征提取的多导联心跳信号分类方法(MSNet)。首先,该方法接收多导联心跳信号堆叠矩阵作为输入;然后,利用3种不同尺度的一维卷积分别提取特征;最后将不同尺度的特征融合并进行所属类别的分类。本文在MIT-BIH Arrhythmia Database,MIT-BIHSupraventricular Arrhythmia Database和St Petersburg INCART 12-lead Arrhythmia Database 3个心电公开数据集上进行了充分的实验,在五折交叉验证的策略下,对于“正常-异常”分类,该方法的准确率、召回率、精确率、F1值均达到了99%以上;对于多类别分类,其平均准确率、平均召回率、平均精确率、平均F1值能达到99.5%左右。与现今优异的其他方法相比,该方法有着更好的表现。 展开更多
关键词 心跳分类 尺度特征提取 特征融合
在线阅读 下载PDF
多尺度特征提取和多级别特征融合的显著性目标检测方法 被引量:9
14
作者 黎玲利 孟令兵 李金宝 《工程科学与技术》 EI CAS CSCD 北大核心 2021年第1期170-177,共8页
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征... 显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊。因此,本文提出一种多尺度特征提取和多级别特征融合的显著性目标检测方法。首先,利用不同扩张率的空洞卷积获取多尺度的上下文信息,弥补单一特征检测带来的不足。其次,提出一个多级别特征融合模块,该模块有效地利用浅层特征信息、深层特征信息和全局上下文特征信息之间的分布特性进行融合,不仅可以抑制噪声的传递,而且可以更有效地恢复显著性目标的空间细节结构信息。同时构建一个简洁的注意力模块,该模块有效保留特征图融合后的通道信息。本文对综合指标、平均绝对误差、结构化度量、精确率-召回率曲线和F-measure曲线进行了实验评估,在5个公开的数据集上进行的实验结果表明:相比于其他13种主流的检测方法,本文方法在不同的评估指标上均有明显的提升,在4个数据集上的综合指标和结构化度量指标均超过其他方法;并且,本文方法的可视化检测的显著图边缘轮廓连续性更好,空间结构细节信息更清晰。 展开更多
关键词 显著性检测 尺度特征提取 多级别特征融合 显著图 深度学习
在线阅读 下载PDF
多尺度密集交互注意力残差真实图像去噪网络 被引量:1
15
作者 郭业才 胡晓伟 +1 位作者 AMITAVE Saha 毛湘南 《图学学报》 北大核心 2025年第2期279-287,共9页
针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级... 针对图像去噪特征提取不全面以及特征利用率低,导致生成图像不够清晰的问题,提出一种多尺度密集交互注意力残差去噪网络(MDIARN)。首先,通过多尺度非对称特征提取模块(MAFM)初步提取浅层信息特征,以确保图像特征的多样性;然后,多尺度级联模块(MSCM)利用多维密集交互残差单元(MDIU)对图像特征进行多维映射,并逐步级联以增强模型之间的信息传递和交互性,充分拟合训练数据;引入双路全局注意力模块(DGAM)对多级特征进行全局联合学习,获取更具有判别性的特征信息;跳跃连接促进结构之间的参数共享,使不同维度的特征充分融合,保证信息的完整性;最后,采用残差学习构建出清晰的去噪图像。结果表明,该算法在真实噪声数据集(DND和SIDD)上峰值信噪比分别为39.80 dB和39.62 dB,结构相似性分别为95.4%和95.8%,均优于主流去噪算法。此外,该算法在低光度场景下应用也能保留更多细节,从而显著提升图像质量。 展开更多
关键词 图像去噪 尺度特征提取 多维密集交互 卷积神经网络 注意力
在线阅读 下载PDF
基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断 被引量:4
16
作者 韩康 战洪飞 +1 位作者 余军合 王瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1285-1295,共11页
传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模... 传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模型(DC-MAFFM).利用空洞卷积的大感受野提取信号特征,同时引入残差连接来减少卷积层上的信息损失,从而有效过滤信号中的噪声;设计改进的多尺度特征提取模块,在不同尺度上捕获互补的诊断特征,同时在各层都进行不同尺度特征融合,充分学习信号的高频和低频特征;利用提出的特征自适应融合模块对不同尺度的特征自适应赋予权重,增强判别特征学习的能力.在2个轴承数据集上进行验证,结果表明所提模型在噪声和变工况下有较强的诊断能力.在强噪声情况下,故障诊断准确率分别达到88.08%和75.56%,与其他方法相比有显著优势. 展开更多
关键词 故障诊断 空洞卷积 残差连接 尺度特征提取 自适应融合
在线阅读 下载PDF
多尺度金字塔注意力的葡萄果梗分割模型
17
作者 张丽英 贺静宇 赵建辉 《计算机工程与设计》 北大核心 2025年第5期1445-1450,共6页
为降低葡萄图像中目标尺寸差异大、光照等复杂环境的影响,提出一种多尺度金字塔注意力网络MPANet(multiscale pyramid attention network)。网络包括特征提取模块、多尺度特征的注意力池化金字塔模块和特征增强模块。在采集的葡萄图像... 为降低葡萄图像中目标尺寸差异大、光照等复杂环境的影响,提出一种多尺度金字塔注意力网络MPANet(multiscale pyramid attention network)。网络包括特征提取模块、多尺度特征的注意力池化金字塔模块和特征增强模块。在采集的葡萄图像数据集上进行实验,提出方法的交并比(IoU)和Dice系数分别为85.3%、97.98%,均优于对比模型,使用几何学方法对分割的果梗进行采摘点定位,准确率为98.26%,验证了模型在果梗分割任务上的有效性。 展开更多
关键词 果梗识别 语义分割 注意力机制 尺度特征提取 池化金字塔 残差连接 采摘点定位
在线阅读 下载PDF
结合残差去噪网络和多尺度深度卷积的JPEG隐写分析
18
作者 宋俊芳 王方馨 +1 位作者 雷善中 冯飞扬 《重庆理工大学学报(自然科学)》 北大核心 2025年第6期132-141,共10页
当前隐写术通过在图像上引入微弱噪声信号,极大地降低了隐写信号的感知性,导致隐写信号难以提取,且现有JPEG域隐写分析方法在构建检测模型上无法精确捕捉局部和全局特性的差异。因此,提出结合残差去噪网络和多尺度深度卷积的JPEG隐写分... 当前隐写术通过在图像上引入微弱噪声信号,极大地降低了隐写信号的感知性,导致隐写信号难以提取,且现有JPEG域隐写分析方法在构建检测模型上无法精确捕捉局部和全局特性的差异。因此,提出结合残差去噪网络和多尺度深度卷积的JPEG隐写分析模型,命名为DMNet。为增强隐写信号并减小图像内容的干扰,基于DnCNN(denoising convolutional neural network)去噪网络深度挖掘噪声信息,改进设计降噪模块,使能够利用不同层次的特征,捕获更加全面的隐写信号。设计多感受野模块,引入多尺度深度卷积扩展感受野,捕获更丰富的局部和全局信息,提高隐写特征的可识别性。此外,为了去除冗余特征,还设计降维模块,并引入平均池化层进行特征降维。结合通道注意力机制,使模型自适应地分配多尺度特征的权重,从而更精准地提取和识别隐写特征。实验结果表明:对于隐写方法J-UNIWARD和UERD,DMNet的检测精度明显优于SRNet、J-XuNet和WangNet,最高提升了36.14%,并且在训练集和测试集失配时也表现出较好的泛化能力。 展开更多
关键词 JPEG隐写分析 DnCNN去噪网络 尺度特征提取 通道注意力
在线阅读 下载PDF
基于改进层次斜率熵(IHSloE)的信号低频和高频故障特征提取方法 被引量:1
19
作者 许立学 刘鑫 +2 位作者 关文锦 陈然 邝素琴 《机电工程》 CAS 北大核心 2024年第7期1189-1197,1230,共10页
采用传统的基于粗粒化处理的多尺度特征提取方法,无法提取故障信号中的高频部分的故障信息,导致其提取到的故障特征难以准确地表征滚动轴承的故障状态和动态特性,无法保证故障诊断的可靠性和准确性。针对该缺陷,提出了一种基于改进层次... 采用传统的基于粗粒化处理的多尺度特征提取方法,无法提取故障信号中的高频部分的故障信息,导致其提取到的故障特征难以准确地表征滚动轴承的故障状态和动态特性,无法保证故障诊断的可靠性和准确性。针对该缺陷,提出了一种基于改进层次斜率熵(IHSloE)和随机森林(RF)的滚动轴承故障诊断方法。首先,利用改进层次化处理代替粗粒化处理,实现了信号的多尺度分析目的,基于斜率熵,提出了改进层次斜率熵的非线性动力学指标;随后,利用IHSloE方法提取了滚动轴承振动信号的故障特征,建立了表征滚动轴承故障特性的故障特征;最后,基于RF模型建立了多故障分类器,并将故障特征输入至RF分类器进行了训练和测试,以实现滚动轴承的故障识别目的;利用滚动轴承数据集进行了实验,并将其与其他的故障特征提取指标进行了对比。研究结果表明:IHSloE方法采用改进的层次化处理,能够快速有效地提取出振动信号中的高频故障特征,诊断准确率达到了99%,而特征提取时间仅为149.35 s;相较于采用粗粒化处理和层次处理的特征提取方法,其准确率至少提高了2%和1%,证明该方法适用于滚动轴承的故障诊断。 展开更多
关键词 故障信号高频部分特征 改进层次斜率熵 随机森林(RF)分类器 尺度特征提取方法 改进层次化处理 故障诊断的可靠性
在线阅读 下载PDF
基于多尺度特征提取与KPCA的轴承故障诊断 被引量:8
20
作者 徐存知 熊新 《电子测量与仪器学报》 CSCD 北大核心 2019年第11期22-29,共8页
针对滚动轴承故障信号特征难以提取导致故障识别率低的问题,提出了基于多尺度特征提取与核主成分分析(KPCA)的轴承故障诊断模型。该模型首先利用固有时间尺度分解(ITD)将振动信号分解成若干个固有旋转(PR)分量,其次根据相关系数准则筛... 针对滚动轴承故障信号特征难以提取导致故障识别率低的问题,提出了基于多尺度特征提取与核主成分分析(KPCA)的轴承故障诊断模型。该模型首先利用固有时间尺度分解(ITD)将振动信号分解成若干个固有旋转(PR)分量,其次根据相关系数准则筛选固有旋转分量,然后求取固有旋转分量在多个尺度上的时域特征,最后利用核主成分分析将得到的多尺度特征进行融合,并用融合后的特征向量建立极限学习机(ELM)故障诊断模型,实现对滚动轴承状态的识别。与传统的单一尺度特征提取方法相比,多尺度特征提取在时域特征的基础上添加了尺度因子,具有度量时间序列在不同尺度因子下复杂性的优点。 展开更多
关键词 尺度特征提取 固有时间尺度分解 核主成分分析 极限学习机
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部