期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
试验环境水下声信号的特征提取方法 被引量:1
1
作者 王红滨 王永乐 +1 位作者 何鸣 薛垚 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第3期489-495,共7页
水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用... 水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用梅尔频谱倒谱系数及线性预测系数处理,两者运用特征加权组合方法得到新的特征矩阵;再应用映射插值算法对特征矩阵进行处理,获得适应神经网络输入的三通道矩阵。本文选取的网络模型为残差神经网络。利用实验室所录制的对河口水库数据集测试表明,本文提出的特征提取方法普遍优于仅利用梅尔频谱倒谱系数或线性预测系数的特征处理方法。利用单频矩形脉冲信号对环境进行深度5分类,准确率平均提升2%。利用线性调频信号对环境进行深度5分类,准确率平均提升2.03%。本文提出的特征提取方法对线性调频信号在深度分类任务下处理的结果要优于单频矩形脉冲信号处理的结果。 展开更多
关键词 环境反演 特征提取 梅尔频谱倒谱系数 线性预测系数 特征加权组合方法 残差神经网络 神经网络 水下声信号
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部