期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
试验环境水下声信号的特征提取方法
被引量:
1
1
作者
王红滨
王永乐
+1 位作者
何鸣
薛垚
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第3期489-495,共7页
水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用...
水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用梅尔频谱倒谱系数及线性预测系数处理,两者运用特征加权组合方法得到新的特征矩阵;再应用映射插值算法对特征矩阵进行处理,获得适应神经网络输入的三通道矩阵。本文选取的网络模型为残差神经网络。利用实验室所录制的对河口水库数据集测试表明,本文提出的特征提取方法普遍优于仅利用梅尔频谱倒谱系数或线性预测系数的特征处理方法。利用单频矩形脉冲信号对环境进行深度5分类,准确率平均提升2%。利用线性调频信号对环境进行深度5分类,准确率平均提升2.03%。本文提出的特征提取方法对线性调频信号在深度分类任务下处理的结果要优于单频矩形脉冲信号处理的结果。
展开更多
关键词
环境反演
特征
提取
梅尔频谱倒谱系数
线性预测系数
特征加权组合方法
残差神经网络
神经网络
水下声信号
在线阅读
下载PDF
职称材料
题名
试验环境水下声信号的特征提取方法
被引量:
1
1
作者
王红滨
王永乐
何鸣
薛垚
机构
哈尔滨工程大学计算机科学与技术学院
电子政务建模仿真国家工程实验室
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第3期489-495,共7页
基金
基础科研项目资助课题(JCKY2019604C004)。
文摘
水下试验环境参数的反演是水声学研究领域的重要内容。而当前研究的关键是通过对水下声信号做特征提取从而获取参数信息。针对特征提取较难、模型很难拟合等问题。本文提出了一种试验环境水下声信号的特征提取方法。将水下声信号同时用梅尔频谱倒谱系数及线性预测系数处理,两者运用特征加权组合方法得到新的特征矩阵;再应用映射插值算法对特征矩阵进行处理,获得适应神经网络输入的三通道矩阵。本文选取的网络模型为残差神经网络。利用实验室所录制的对河口水库数据集测试表明,本文提出的特征提取方法普遍优于仅利用梅尔频谱倒谱系数或线性预测系数的特征处理方法。利用单频矩形脉冲信号对环境进行深度5分类,准确率平均提升2%。利用线性调频信号对环境进行深度5分类,准确率平均提升2.03%。本文提出的特征提取方法对线性调频信号在深度分类任务下处理的结果要优于单频矩形脉冲信号处理的结果。
关键词
环境反演
特征
提取
梅尔频谱倒谱系数
线性预测系数
特征加权组合方法
残差神经网络
神经网络
水下声信号
Keywords
inversion
feature extraction
mel-frequency cepstral coefficient
linear prediction coefficient
a combination method of weighted features
ResNet
neural network
underwater acoustic signals
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
试验环境水下声信号的特征提取方法
王红滨
王永乐
何鸣
薛垚
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部