期刊文献+
共找到320篇文章
< 1 2 16 >
每页显示 20 50 100
面向分类器进行特征加权的Android恶意软件检测
1
作者 熊智 刘芳 王逸轩 《计算机工程与科学》 北大核心 2025年第9期1598-1608,共11页
特征加权可以提供更综合的信息增强模型的学习能力和决策准确性,但在实际运用时往往忽视了特征与分类器之间的相互关系。针对这一问题,提出一种面向分类器的特征加权法COFW,并将其应用于Android恶意软件检测。首先从Android应用程序包... 特征加权可以提供更综合的信息增强模型的学习能力和决策准确性,但在实际运用时往往忽视了特征与分类器之间的相互关系。针对这一问题,提出一种面向分类器的特征加权法COFW,并将其应用于Android恶意软件检测。首先从Android应用程序包中提取7个类别的特征,并挑选出最重要的特征子集;其次根据检测恶意软件所使用的分类器,采用COFW为该分类器计算每个特征的最优权重;最后采用加权后的特征训练该分类器。COFW采用去一法为每个特征计算初始权重,然后通过一个映射函数将其映射为最终权重,并采用差分进化算法优化映射函数和分类器的参数。实验结果表明,运用COFW进行特征加权能够提升分类器的性能,并且COFW的性能优于其他4种为Android恶意软件检测设计的特征加权法。 展开更多
关键词 特征加权 面向分类器 映射函数 Android恶意软件检测
在线阅读 下载PDF
基于特征加权集成学习的陶瓷制造能效预测方法研究
2
作者 马帅印 李敏 +3 位作者 殷磊 孔宪光 王超 胥军 《计算机集成制造系统》 北大核心 2025年第10期3817-3830,共14页
陶瓷制造作为典型的高能耗制造行业,其节能降耗一直是备受关注的热点问题之一。企业可通过能效预测找到节能降耗的切入点,从而降低生产能耗和提高生产能效。通过分析生产流程中的能耗数据,建立能效预测模型,准确预测生产过程的能源消耗... 陶瓷制造作为典型的高能耗制造行业,其节能降耗一直是备受关注的热点问题之一。企业可通过能效预测找到节能降耗的切入点,从而降低生产能耗和提高生产能效。通过分析生产流程中的能耗数据,建立能效预测模型,准确预测生产过程的能源消耗,并为能效优化提供支撑,以实现高能耗产业的绿色制造与可持续发展。针对上述目标,提出基于特征加权Stacking集成学习的陶瓷制造能效预测方法,首先,通过分析不同模型的预测性能和相关性,确定线性回归、极端随机树、极限梯度提升树和k-最近邻作为基学习器;然后,根据预测精度对不同基学习器进行特征加权;最后,将加权后基学习器的预测结果进行集成,使用轻量级梯度提升算法作为元模型进行预测。基于陶瓷制造数据集,对提出的方法进行验证,结果表明:特征加权Stacking集成学习模型的预测精度要显著高于传统Stacking集成学习预测模型和单一基学习器模型,证明了所提方法的有效性,为实现绿色制造与可持续发展提供理论支撑。 展开更多
关键词 陶瓷制造 能效预测 Stacking集成学习模型 特征加权
在线阅读 下载PDF
基于二次平滑和特征加权的高光谱图像分类
3
作者 许淇 杨嘉葳 王继燕 《测绘通报》 北大核心 2025年第6期55-61,共7页
针对多种基于图像滤波的空谱联合分类方法在去噪的同时难以保留图像弱边缘的问题,本文提出了一种基于二次平滑和特征加权的高光谱图像分类方法。首先通过最小最大规范化对原始高光谱图像进行预处理,其次采用主成分分析对高光谱图像进行... 针对多种基于图像滤波的空谱联合分类方法在去噪的同时难以保留图像弱边缘的问题,本文提出了一种基于二次平滑和特征加权的高光谱图像分类方法。首先通过最小最大规范化对原始高光谱图像进行预处理,其次采用主成分分析对高光谱图像进行降维,再次运用加窗域变换递归滤波在得到弱化噪声的特征图像的同时保留弱边缘,然后通过L0梯度最小化对特征图像进行二次平滑进一步抑制噪声并增强边缘,并基于方差对特征图像进行加权,最后采用支持向量机进行分类。在两个数据集上进行试验,该方法的分类精度相比基于光谱特征的方法分别提升了14.06%和25.75%,相比于该领域多种滤波算法分别提升0.76%~4.3%和1.5%~5.69%,且分类结果更能反映真实地物类别。 展开更多
关键词 高光谱图像分类 主成分分析 加窗域变换递归滤波 L0梯度最小化 特征加权
在线阅读 下载PDF
基于全局与局部特征加权融合的隐喻识别模型
4
作者 马月坤 马铭佑 《计算机工程》 北大核心 2025年第5期143-153,共11页
部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更... 部分文本中隐喻本体与喻体位置相距较远,导致模型学习文本语境信息的难度增大,以及所提取的特征中重要信息不明显。为此,提出一种基于全局与局部特征加权融合的隐喻识别模型。首先,设计了局部特征提取模块(LFEM),通过对不同范围以及更大感受野下文本局部特征的关注来达到学习词语周围不同距离语境信息的目的;其次,使用双向长短时记忆(BiLSTM)与多头注意力构成全局特征提取模块(GFEM),学习宏观句子级语义信息;最后,设计了特征加权融合模块(FWFM),对提取得到的2种特征进行自适应动态融合,以较少的噪声获得鲁棒性更强且重要信息更为集中的特征。实验结果表明,相比RoBERTa+Transformer+GCN模型,所提模型在VUA ALLPOS、TOEFL ALLPOS以及CCL 3个数据集上的F1值分别提升了1.1、1.2和3.2百分点,所提模型具有更高的隐喻识别精度。 展开更多
关键词 隐喻识别 全局特征 局部特征 特征加权 注意力机制 双向长短时记忆
在线阅读 下载PDF
基于自适应动态特征加权的K-means算法
5
作者 薛雷 王天放 《吉林大学学报(理学版)》 北大核心 2025年第5期1404-1410,共7页
首先,针对传统K-means算法在处理高维异构数据时存在特征平等假设导致重要特征被忽视、聚类结果对预设簇数高度敏感以及对初始中心点选择强依赖性的问题,提出一种自适应动态特征加权K-means(adaptive dynamic feature weighting K-means... 首先,针对传统K-means算法在处理高维异构数据时存在特征平等假设导致重要特征被忽视、聚类结果对预设簇数高度敏感以及对初始中心点选择强依赖性的问题,提出一种自适应动态特征加权K-means(adaptive dynamic feature weighting K-means,ADFW-K-means)算法,该算法融合了动态特征加权、K-means++优化初始化、肘部法则辅助簇数选择、空簇处理机制以及自适应簇数调整策略等多项技术.其次,在吉林大学20222024年选调生数据集上进行实验,实验结果表明,ADFW-K-means算法相较于传统聚类算法,在轮廓系数、聚类稳定性和业务可解释性3个核心指标上均得到显著提升,ADFW-K-means算法有效克服了传统方法的固有缺陷,显著提升了复杂高维异构数据聚类的准确性和鲁棒性. 展开更多
关键词 自适应簇数 动态特征加权 K-MEANS算法 聚类算法
在线阅读 下载PDF
基于整体与局部纹理特征加权融合的港机装备钢丝绳断丝缺陷检测研究 被引量:2
6
作者 张卫国 刘聪 +2 位作者 曾祥堃 夏立成 王紫阳 《中国工程机械学报》 北大核心 2024年第3期398-403,共6页
钢丝绳是港机装备的重要部件,由于作业工况环境恶劣,钢丝绳表面极易引起断丝等缺陷,影响港机装备作业安全。针对港机装备钢丝绳表面油泥严重、光照亮度不均,以及港机装备钢丝绳断丝缺陷能够在钢丝绳股顶钢丝椭圆形区域内有效体现的特点... 钢丝绳是港机装备的重要部件,由于作业工况环境恶劣,钢丝绳表面极易引起断丝等缺陷,影响港机装备作业安全。针对港机装备钢丝绳表面油泥严重、光照亮度不均,以及港机装备钢丝绳断丝缺陷能够在钢丝绳股顶钢丝椭圆形区域内有效体现的特点,提出了一种基于钢丝绳整体纹理特征与股顶钢丝椭圆形区域边缘轮廓纹理特征加权融合的钢丝绳断丝缺陷检测方法。首先采用图像降噪、增强、校正技术对钢丝绳原始图像进行预处理。然后采用图像平滑、阈值分割及边缘特征提取技术对股顶钢丝椭圆形区域边缘轮廓进行提取。接着采用局部二值模式(LBP)算子分别提取钢丝绳整体纹理特征与股顶钢丝椭圆形区域边缘轮廓纹理特征,并对钢丝绳整体纹理及边缘轮廓纹理特征进行特征加权融合。最后对加权融合后的特征向量进行主成分分析(PCA)法降维,并应用支持向量机(SVM)技术对钢丝绳断丝缺陷进行检测。研究结果表明:本文提出的方法对实际工况下重油泥、光照不均等钢丝绳断丝缺陷具有较好的检测效果,具有一定的工程应用价值。 展开更多
关键词 港机装备 钢丝绳断丝检测 股顶钢丝 椭圆形轮廓 纹理特征 特征加权融合
在线阅读 下载PDF
结合力导向图分布算法的特征加权深度嵌入聚类
7
作者 吕维 钱宇华 +2 位作者 王婕婷 李飞江 胡深 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1318-1324,共7页
聚类分析作为无监督学习领域的一个重要研究方向,是许多数据驱动应用的核心.但是高维数据特有的高维距离趋同特性,使得高维空间样本近邻结构遭到破坏,从而使得大量基于距离(基于近邻)的聚类算法性能急剧下降.目前,大量研究者认为,高维... 聚类分析作为无监督学习领域的一个重要研究方向,是许多数据驱动应用的核心.但是高维数据特有的高维距离趋同特性,使得高维空间样本近邻结构遭到破坏,从而使得大量基于距离(基于近邻)的聚类算法性能急剧下降.目前,大量研究者认为,高维数据往往包含大量与任务不相关特征及相互关联的特征,其真实特征维度往往要比原始特征维度低很多.在学习样本低维等价表示上,基于深度自编码器的深度嵌入学习尽可能地保留重构信息.然而,现有此类方法往往需要聚类损失引导聚类,这虽然提高了聚类性能,但聚类损失与重构损失间的内在矛盾,限制了聚类性能的进一步提高.基于力导向图分布算法的降维算法则是尽可能保留近邻结构信息的基础上学习样本低维表示,但是高维距离趋同的特性使得此类算法较难准确获取样本高维近邻结构信息.本文在深度自编码器与力导向图分布算法的基础上引入特征加权思想,使模型在具有强大的低维等价表示能力及根据数据近邻结构凸显簇结构能力的同时考虑特征对聚类任务的适合程度.5个数据集上与最新高维聚类算法的对比实验充分证明了本文算法的合理性与优越性. 展开更多
关键词 高维聚类 深度自编码器 特征加权 力导向图分布算法
在线阅读 下载PDF
基于特征加权融合的红外图像增强方法 被引量:2
8
作者 田静 《激光杂志》 CAS 北大核心 2024年第8期155-158,共4页
红外图像增强可以改善图像中的细节和对比度,使得目标在图像中更加清晰可见,对红外图像的目标检测和识别任务具有重要意义。为此,提出一种基于特征加权融合的红外图像增强方法。首先分析红外图像对比度和边缘细节,结合光谱特征融合方法... 红外图像增强可以改善图像中的细节和对比度,使得目标在图像中更加清晰可见,对红外图像的目标检测和识别任务具有重要意义。为此,提出一种基于特征加权融合的红外图像增强方法。首先分析红外图像对比度和边缘细节,结合光谱特征融合方法进行红外图像的降噪预处理。提取降噪后红外图像的区域梯度特征后,加权融合所提取的具体图像特征,利用Retinex算法对加权融合的红外图像特征进行色调映射,实现最终的红外图像增强处理。结果显示,本方法MSE为0.603%,PSNR为49.11 dB,SSIM为0.988。由此证明,采用该方法可以实现红外图像的增强处理,具有一定应用价值。 展开更多
关键词 图像增强 红外图像 稀疏表示 特征加权融合 光谱特征
在线阅读 下载PDF
特征加权的模糊C聚类算法 被引量:11
9
作者 陈新泉 《计算机工程与设计》 CSCD 北大核心 2007年第22期5329-5333,共5页
参照文献[5]中将K-means聚类算法与特征权重优化相结合的方法,推导出FCM聚类算法与特征权重优化相结合的优化迭代公式,形成加权FCM算法。将加权FCM算法中计算聚类均值项的公式代入到计算隶属度的更新公式和特征权重的更新公式中,得到加... 参照文献[5]中将K-means聚类算法与特征权重优化相结合的方法,推导出FCM聚类算法与特征权重优化相结合的优化迭代公式,形成加权FCM算法。将加权FCM算法中计算聚类均值项的公式代入到计算隶属度的更新公式和特征权重的更新公式中,得到加权FCM扩展算法。由于这个扩展算法消去了均值项,它对于有序属性和无序类别属性的隶属度和特征权重的更新公式具有统一的形式,因此可以很方便地应用到混合属性数据集的加权聚类分析中来。该算法的收敛性分析与FCM类似,算法迭代结束后能给出一组优化的特征权重值。仿真实验结果与WKMeans算法的结果基本一致,说明该方法在优化混合属性数据集的特征权重时是有效的。 展开更多
关键词 加权FCM 特征权重优化 固定特征加权 可变特征加权 加权FCM扩展算法
在线阅读 下载PDF
基于特征加权的模糊聚类新算法 被引量:116
10
作者 李洁 高新波 焦李成 《电子学报》 EI CAS CSCD 北大核心 2006年第1期89-92,共4页
在聚类分析中,针对不同类型的数据,人们设计了模糊k-均值、k-mode以及k-原型算法以分别适合于数值型、类属型和混合型数据.但无论上述哪种方法都假定待分析样本的各维特征对分类的贡献相同.为了考虑样本矢量中各维特征对模式分类的不同... 在聚类分析中,针对不同类型的数据,人们设计了模糊k-均值、k-mode以及k-原型算法以分别适合于数值型、类属型和混合型数据.但无论上述哪种方法都假定待分析样本的各维特征对分类的贡献相同.为了考虑样本矢量中各维特征对模式分类的不同影响,本文提出一种基于特征加权的模糊聚类新算法,通过ReliefF算法对特征进行加权选择,不仅能够将模糊k-均值、k-mode以及k-原型算法合而为一,同时使样本的分类效果更好,而且还可以分析各维特征对分类的贡献程度.对各种实际数据集的测试实验结果均显示出新算法的优良性能. 展开更多
关键词 聚类分析 模糊聚类 数值特征 类属特征 特征加权
在线阅读 下载PDF
一种基于特征重要度的文本分类特征加权方法 被引量:25
11
作者 刘赫 刘大有 +1 位作者 裴志利 高滢 《计算机研究与发展》 EI CSCD 北大核心 2009年第10期1693-1703,共11页
针对文本分类中的特征加权问题,提出了一种基于特征重要度的特征加权方法.该方法基于实数粗糙集理论,通过定义特征重要度,将特征对分类的决策信息引入到特征权重中.然后,在标准文本数据集Reuters-21578 Top10和WebKB上进行了实验.结果表... 针对文本分类中的特征加权问题,提出了一种基于特征重要度的特征加权方法.该方法基于实数粗糙集理论,通过定义特征重要度,将特征对分类的决策信息引入到特征权重中.然后,在标准文本数据集Reuters-21578 Top10和WebKB上进行了实验.结果表明,该方法能改善样本空间的分布状态,使同类样本更加紧凑,异类样本更加松散,从而简化从样本到类别的映射关系.最后,使用Nave Bayes,kNN和SVM分类器在上述数据集上对该方法进行了实验.结果表明,该方法能提高分类的准确率、召回率和F1值. 展开更多
关键词 文本分类 特征加权 特征重要度 粗糙集 决策表
在线阅读 下载PDF
基于SVM的特征加权KNN算法 被引量:53
12
作者 陈振洲 李磊 姚正安 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期17-20,共4页
作为一种非参数的分类算法,K_近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。在应用KNN算法解决问题的时候,要注意两个方面的问题———样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM... 作为一种非参数的分类算法,K_近邻(KNN)算法是非常有效和容易实现的。它已经广泛应用于分类、回归和模式识别等。在应用KNN算法解决问题的时候,要注意两个方面的问题———样本权重和特征权重。利用SVM来确定特征的权重,提出了基于SVM的特征加权算法(FWKNN,featureweightedKNN)。实验表明,在一定的条件下,FWKNN能够极大地提高分类准确率。 展开更多
关键词 支持向量机 K-近邻算法 距离加权 特征加权
在线阅读 下载PDF
特征加权支持向量机 被引量:57
13
作者 汪廷华 田盛丰 黄厚宽 《电子与信息学报》 EI CSCD 北大核心 2009年第3期514-518,共5页
该文针对现有的加权支持向量机(WSVM)和模糊支持向量机(FSVM)只考虑样本重要性而没有考虑特征重要性对分类结果的影响的缺陷,提出了基于特征加权的支持向量机方法,即特征加权支持向量机(FWSVM)。该方法首先利用信息增益计算各个特征对... 该文针对现有的加权支持向量机(WSVM)和模糊支持向量机(FSVM)只考虑样本重要性而没有考虑特征重要性对分类结果的影响的缺陷,提出了基于特征加权的支持向量机方法,即特征加权支持向量机(FWSVM)。该方法首先利用信息增益计算各个特征对分类任务的重要度,然后用获得的特征重要度对核函数中的内积和欧氏距离进行加权计算,从而避免了核函数的计算被一些弱相关或不相关的特征所支配。理论分析和数值实验的结果都表明,该方法比传统的SVM具有更好的鲁棒性和分类能力。 展开更多
关键词 支持向量机 特征加权 信息增益 机器学习
在线阅读 下载PDF
基于稀疏表示和特征加权的大数据挖掘方法的研究 被引量:16
14
作者 蔡柳萍 解辉 +1 位作者 张福泉 张龙飞 《计算机科学》 CSCD 北大核心 2018年第11期256-260,共5页
为了提高大数据挖掘的效率及准确度,文中将稀疏表示和特征加权运用于大数据处理过程中。首先,采用求解线性方程稀疏解的方式对大数据进行特征分类,在稀疏解的求解过程中利用向量的范数将此过程转化为最优化目标函数的求解。在完成特征... 为了提高大数据挖掘的效率及准确度,文中将稀疏表示和特征加权运用于大数据处理过程中。首先,采用求解线性方程稀疏解的方式对大数据进行特征分类,在稀疏解的求解过程中利用向量的范数将此过程转化为最优化目标函数的求解。在完成特征分类后进行特征提取以降低数据维度,最后充分结合数据在类中的分布情况进行有效加权来实现大数据挖掘。实验结果表明,相比于常见的特征提取和特征加权算法,提出的算法在查全率和查准率方面均呈现出明显优势。 展开更多
关键词 大数据 数据挖掘 特征加权 特征提取 稀疏表示
在线阅读 下载PDF
基于特征加权朴素贝叶斯分类算法的网络用户识别 被引量:8
15
作者 刘磊 陈兴蜀 +2 位作者 尹学渊 段意 吕昭 《计算机应用》 CSCD 北大核心 2011年第12期3268-3270,共3页
基于网络用户的访问记录,提出了采用特征加权的朴素贝叶斯分类算法对用户进行识别。首先利用基于WinPcap框架的数据采集系统对用户访问记录进行采集,通过分析记录从5个方面对用户特征进行统计,并经过筛选后对特征进行选取,最后采用特征... 基于网络用户的访问记录,提出了采用特征加权的朴素贝叶斯分类算法对用户进行识别。首先利用基于WinPcap框架的数据采集系统对用户访问记录进行采集,通过分析记录从5个方面对用户特征进行统计,并经过筛选后对特征进行选取,最后采用特征加权的朴素贝叶斯分类算法对3 300个测试样本进行识别,识别率达到了85.73%。实验结果表明该算法能够有效实现对网络用户身份的识别。 展开更多
关键词 用户识别 朴素贝叶斯分类器 特征加权 特征选择 数据采集
在线阅读 下载PDF
基于TFIDF文本特征加权方法的改进研究 被引量:37
16
作者 张保富 施化吉 马素琴 《计算机应用与软件》 CSCD 2011年第2期17-20,共4页
针对传统TFIDF方法将文档集作为整体来处理,并没有考虑到特征项在类间和类内的分布情况的不足,提出一种结合信息熵的TFIDF改进方法。该方法采用结合特征项在类间和类内信息分布熵来调整TFIDF特征项的权重计算,避免了那些对分类没有贡献... 针对传统TFIDF方法将文档集作为整体来处理,并没有考虑到特征项在类间和类内的分布情况的不足,提出一种结合信息熵的TFIDF改进方法。该方法采用结合特征项在类间和类内信息分布熵来调整TFIDF特征项的权重计算,避免了那些对分类没有贡献的特征项被赋予较大权值的缺陷,能更有效计算文本特征项的权重。实验结果表明该方法提高了文本分类的精确度和召回率,是一种比较有效的文本特征加权方法。 展开更多
关键词 TFIDF 文本分类 特征加权 向量空间模型
在线阅读 下载PDF
文本特征加权方法TF·IDF的分析与改进 被引量:10
17
作者 林永民 吕震宇 +1 位作者 赵爽 朱卫东 《计算机工程与设计》 CSCD 北大核心 2008年第11期2923-2925,2929,共4页
TF·IDF作为一种简单、直观、处理速度快的文本特征加权方法,在文本分类中得到广泛应用。但是这种方法简单地认为文本频数少的单词就重要,文本频数多的单词就不重要,使它不可能很好的反映单词的有用程度,从而导致分类准确率下降。针... TF·IDF作为一种简单、直观、处理速度快的文本特征加权方法,在文本分类中得到广泛应用。但是这种方法简单地认为文本频数少的单词就重要,文本频数多的单词就不重要,使它不可能很好的反映单词的有用程度,从而导致分类准确率下降。针对TF·IDF方法存在的问题,采用在特征发生的条件下类的后验概率分布来衡量特征对分类的有效性,提出了一种基于熵的特征加权方法TF·Ensu。实验结果表明,这种加权方法具有很好的分类性能。 展开更多
关键词 文本分类 特征选择 特征加权 向量空间模型
在线阅读 下载PDF
一种特征加权模糊聚类的负载均衡算法 被引量:8
18
作者 黄伟华 马中 +3 位作者 戴新发 徐明迪 高毅 刘利民 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2017年第2期127-132,共6页
针对负载均衡算法中多类负载的融合问题,提出了一种基于特征加权模糊聚类的负载均衡算法.首先,将不同系统资源作为负载度量的一个维度,并针对不同维度进行特征加权,实现了对综合负载的量化;然后,引入模糊聚类方法,优化了权重约束,并增... 针对负载均衡算法中多类负载的融合问题,提出了一种基于特征加权模糊聚类的负载均衡算法.首先,将不同系统资源作为负载度量的一个维度,并针对不同维度进行特征加权,实现了对综合负载的量化;然后,引入模糊聚类方法,优化了权重约束,并增加惩罚项,以此对负载进行聚类划分,为负载迁移定位最优目标节点簇.实验结果表明,该算法能够融合多维负载数据,与经典算法相比,集群中节点负载的标准差减小了21%. 展开更多
关键词 负载均衡 模糊聚类 特征加权 目标函数
在线阅读 下载PDF
特征加权距离与软子空间学习相结合的文本聚类新方法 被引量:22
19
作者 王骏 王士同 邓赵红 《计算机学报》 EI CSCD 北大核心 2012年第8期1655-1665,共11页
文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于... 文本数据维数高、数据分布稀疏、不同类别的特征相互重叠,这为聚类分析提出了挑战.针对文本数据的这一特点,将特征加权技术与软子空间相结合,基于模糊聚类的算法框架,提出了一种适用于高维文本数据的软子空间模糊聚类新方法.首先,基于加权范数理论,提出了新的特征加权距离计算方法.接着,将其与软子空间学习的理论框架相结合,提出了面向模糊聚类的新的目标学习准则.通过向约束条件中引入熵指数r,从而扩展了模糊指数m的取值范围,并给出了物理解释.基于Zangwill收敛定理对算法的全局收敛性给出理论证明.实验表明,文中算法可以使软子空间学习和聚类分析同时进行,其性能比现有的相关算法有了较大的提高. 展开更多
关键词 模糊聚类 文本聚类 软子空间 特征加权距离 全局收敛性
在线阅读 下载PDF
极大熵Relief特征加权 被引量:9
20
作者 张翔 邓赵红 +1 位作者 王士同 蔡及时 《计算机研究与发展》 EI CSCD 北大核心 2011年第6期1038-1048,共11页
Relief特征加权的最新研究进展表明其可近似地表述为一个间距最大化优化问题.尽管该类算法广为应用,但仍然存在一些缺陷.为了提高Relief特征加权的适应性和鲁棒性,融合间距最大化和极大熵理论,并由此探讨了新的鲁棒的具有更好适应性的Re... Relief特征加权的最新研究进展表明其可近似地表述为一个间距最大化优化问题.尽管该类算法广为应用,但仍然存在一些缺陷.为了提高Relief特征加权的适应性和鲁棒性,融合间距最大化和极大熵理论,并由此探讨了新的鲁棒的具有更好适应性的Relief特征加新方法.首先,构造了一个结合极大熵原理的间距最大化目标函数.对于该目标函数,运用优化理论得到一些重要的理论结果.在此基础上,对于两类数据、多类数据和在线数据,提出了一组鲁棒的Relief特征加权算法.利用UCI基准数据集和基因数据集进行了实验验证,结果表明提出的新Relief特征加权算法对噪音和例外点显示出了更好的适应性和鲁棒性. 展开更多
关键词 RELIEF算法 特征选择 特征加权 间距最大化原则 极大熵
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部