期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
基于循环提取有效信息的主轴承故障特征增强方法 被引量:10
1
作者 栾孝驰 赵俊豪 +2 位作者 沙云东 佟鑫宇 张振鹏 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期251-262,共12页
针对航空发动机主轴承发生故障时特征信息提取不充分的问题,提出一种基于循环提取有效信息的主轴承故障特征增强方法。该方法首先对原始振动信号进行小波包分解,计算得到各个节点分量的相关系数值和峭度值,将其进行归一化融合为一个综... 针对航空发动机主轴承发生故障时特征信息提取不充分的问题,提出一种基于循环提取有效信息的主轴承故障特征增强方法。该方法首先对原始振动信号进行小波包分解,计算得到各个节点分量的相关系数值和峭度值,将其进行归一化融合为一个综合参数P i;其次根据特征信息循环提取准则定义一个置信区间,该区间将所有节点分量划分为高信噪比信号、低信噪比信号和高噪信号3个部分;然后不断筛选出高信噪比信号直至达到终止条件;最后重构所有高信噪比信号,并进行包络解调提取出轴承微弱故障特征。经仿真信号验证,去噪信号的信噪比相对于去噪前提升了11.31 dB。基于航空发动机中介轴承模拟试验台所测数据开展了特征信息循环提取方法有效性的综合验证,并对某型航空发动机主轴承振动信号进行了分析。实践表明:该方法适用于强背景噪声干扰工况下滚动轴承的特征提取,能准确诊断航空发动机主轴承故障。 展开更多
关键词 滚动轴承 航空发动机 小波包分解 特征信息循环提取准则 故障特征增强
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
2
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于信息熵的循环谱分析方法及其在滚动轴承故障诊断中的应用 被引量:15
3
作者 黎敏 阳建宏 王晓景 《振动工程学报》 EI CSCD 北大核心 2015年第1期164-174,共11页
滚动轴承出现故障时的振动信号往往具有周期性的冲击特征,在频谱中会出现多倍频调制的宽频信息。当利用传统的循环谱分析方法(Cyclic Spectrum Density,CSD)进行分析时,在谱图中往往包含着较多的噪声干扰成分,难以准确提取出滚动轴承的... 滚动轴承出现故障时的振动信号往往具有周期性的冲击特征,在频谱中会出现多倍频调制的宽频信息。当利用传统的循环谱分析方法(Cyclic Spectrum Density,CSD)进行分析时,在谱图中往往包含着较多的噪声干扰成分,难以准确提取出滚动轴承的故障特征。因此,提出一种基于信息熵的循环谱分析方法(Cyclic Spectrum Density based on Entropy,CSDE),利用每个循环频率切片的熵值大小来衡量该循环频率的信息量,以表征该循环频率的调制能力,并以此作为加权因子,对每个循环频率赋予不同的权重大小,以弱化干扰频率的影响,最终实现故障特征的提取和故障严重程度的判断。分别利用共振解调、CSD和CSDE三种方法对实验台滚动轴承外圈故障和工业现场大脱硫风机滚动轴承故障进行分析,验证了新方法在滚动轴承故障诊断中的有效性。 展开更多
关键词 故障诊断 滚动轴承 信息 循环 特征提取
在线阅读 下载PDF
基于高景一号遥感影像的林地信息提取 被引量:10
4
作者 曾文 林辉 +2 位作者 李新宇 肖越 鲁宏旺 《中南林业科技大学学报》 CAS CSCD 北大核心 2020年第7期32-40,共9页
【目的】及时、准确地掌握林地信息是森林经营管理的前提,高分辨率遥感影像为林地信息精细识别提供了可能。【方法】以当阳市玉泉乡为研究区,以国产卫星高景一号(SV-1)遥感影像为数据源,提取各波段光谱信息和植被指数作为分类特征,采用... 【目的】及时、准确地掌握林地信息是森林经营管理的前提,高分辨率遥感影像为林地信息精细识别提供了可能。【方法】以当阳市玉泉乡为研究区,以国产卫星高景一号(SV-1)遥感影像为数据源,提取各波段光谱信息和植被指数作为分类特征,采用特征可分性、重要性及特征间冗余度分别构建了4种特征评价准则,基于支持向量机(SVM)分类器对研究区进行林地信息提取,结合森林资源二类调查结果进行精度验证。【结果】1、评价准则中,特征重要性优于可分性,特征可分性受高度相关的特征组合(如OSAVI和NDVI等)的影响会造成分类精度的下降。2、在特征重要性和可分性的基础上结合特征间冗余度能进一步提高分类精度并有效降低特征维数,特征维数由11维降至8维,特征可分性方法和特征重要性的分类精度分别提高了4.65%和4.58%;3、根据特征重要性结合冗余度选择RGVI、EVI、B1、B3、B2、DVI、RVI、Brightness 8个特征,建立SVM线性核分类模型可以达到最优分类效果,总体分类精度高达92.49%,Kappa系数为0.9084。【结论】SV-1遥感影像由于其高空间分辨率在林地信息精细提取中具有可行性,本研究通过建立特征评价准则筛选分类特征能进一步挖掘分类器的泛化能力,为及时、准确地获取林地信息提供技术支撑,同时也为同等高分辨率遥感卫星数据处理提供了参考。 展开更多
关键词 林地信息提取 特征评价准则 支持向量机分类 高景一号
在线阅读 下载PDF
融合多粒度信息的用户画像生成方法 被引量:6
5
作者 邵一博 秦玉华 +2 位作者 崔永军 高宝勇 赵彪 《计算机应用研究》 CSCD 北大核心 2024年第2期401-407,共7页
现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该... 现有用户画像方法缺乏不同粒度文本信息表示,且特征提取阶段存在噪声,导致构建画像不够准确。针对以上问题,提出一种融合多粒度信息的用户画像生成方法(user profile based on multi-granularity information fusion,UP-MGIF)。首先,该方法在嵌入层融合字粒度、词粒度表示向量以扩充特征内容;其次,在改进双向门控循环单元网络基础上,结合降噪自编码器和注意力机制设计一种特征提取混合模型Bi-GRU-DAE-Attention,实现特征降噪和语义增强;最后,将鲁棒性强的特征向量输入到分类器中实现用户画像生成。实验表明,该用户画像生成方法在医疗和互联网两个画像数据集上的分类准确率高于其他基线方法,并通过消融实验验证了各个模块的有效性。 展开更多
关键词 用户画像 多粒度信息融合 特征提取 双向控制循环单元
在线阅读 下载PDF
基于FFT-DC-GRU-NLA的中长期居民用电量预测模型
6
作者 章诚 申超 《现代电子技术》 北大核心 2025年第16期88-96,共9页
针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取... 针对现有的中长期居民用电量预测模型中存在复杂电力数据建模难、信息表示能力差、模型预测精度低等问题,提出一种基于FFT-DC-GRU-NLA的中长期居民用电量预测模型。首先利用快速傅里叶变换(FFT)对用电量数据进行分解,通过频域分解提取多周期分量,得到一组二维子序列;然后将其作为自主设计的信息表示模块的输入,通过融合卷积神经网络、门控循环单元和非局部注意力机制,实现了对二维子序列的多尺度信息表示和深度特征提取;最终,深度特征经过全连接层重新构建,并采用残差结构进行迭代预测。在一个居民用电量的公开数据集上与当前电力预测领域内的多个先进模型相比,所提模型在96、192、336、720这4个预测长度上均取得了最高的预测精度;此外,该模型分别在两个电力预测公开数据集上也取得了较好的预测精度。实验结果表明,所提模型能够有效提升中长期居民用电量预测的精度且具有较好的泛化性。 展开更多
关键词 中长期用电量预测 快速傅里叶变换 卷积神经网络 门控循环单元 非局部注意力机制 多尺度信息 深度特征提取
在线阅读 下载PDF
二维类内差异信息保持的人脸识别
7
作者 孔爱祥 王成儒 《光电工程》 CAS CSCD 北大核心 2012年第10期65-70,共6页
为了使增强的Fisher鉴别准则(EFDC)避免因PCA降维带来的鉴别信息丢失问题,本文将其进行二维推广,提出基于二维类内差异信息保持(2D-IDP)的人脸识别方法,该方法建立了一个鲁棒性更强的鉴别准则,使得投影后不同类的样本点尽量远离的同时,... 为了使增强的Fisher鉴别准则(EFDC)避免因PCA降维带来的鉴别信息丢失问题,本文将其进行二维推广,提出基于二维类内差异信息保持(2D-IDP)的人脸识别方法,该方法建立了一个鲁棒性更强的鉴别准则,使得投影后不同类的样本点尽量远离的同时,类内紧致性和差异信息都得到有效保持,避免了过学习现象的产生。同时对EFDC近邻图中的参数t作了重新定义,使其能根据不同的输入样本自适应的变化,避免了t选择不当导致的识别性能下降的问题。在YALE和AR人脸库上的实验表明了本文方法的有效性。 展开更多
关键词 类内差异信息 Fisher线性鉴别准则 特征提取 人脸识别
在线阅读 下载PDF
结合深度乐谱特征融合的钢琴指法生成方法 被引量:2
8
作者 李锵 吴正彪 关欣 《智能系统学报》 CSCD 北大核心 2023年第6期1287-1294,共8页
指法是钢琴演奏的关键技术,但是除了初学者的教科书外,大多数乐谱都没有指法注释。目前用于钢琴指法自动生成的隐马尔可夫模型(hidden Markov model,HMM)和长短时记忆网络(long short-term memory,LSTM)模型,仅针对乐谱的音高建立模型,... 指法是钢琴演奏的关键技术,但是除了初学者的教科书外,大多数乐谱都没有指法注释。目前用于钢琴指法自动生成的隐马尔可夫模型(hidden Markov model,HMM)和长短时记忆网络(long short-term memory,LSTM)模型,仅针对乐谱的音高建立模型,忽略同样影响指法的速度信息,存在对乐谱综合特征提取能力不足、生成的指法正确率低等问题。针对这些问题,设计一种可以同时利用乐谱的音高信息与速度信息的特征提取方法,并引入Word2Vec-CBOW(continuous bag-of-words)模型得到融合特征向量,根据人体左右手镜像对称的特点对原始数据进行左右手序列的数据增强与联合训练,最后结合双向长短时记忆网络-条件随机场(bidirectional LSTM conditional random field,BiLSTM-CRF)模型实现指法的生成。实验结果显示,本文提出的算法相比常用的统计学习方法和深度学习方法均有明显提高,验证了其合理性和有效性。 展开更多
关键词 人工智能 音乐 信息检索 长短时记忆 循环神经网络 数据处理 特征提取 时间序列
在线阅读 下载PDF
基于主题的Web文档聚类研究 被引量:31
9
作者 孙学刚 陈群秀 马亮 《中文信息学报》 CSCD 北大核心 2003年第3期21-26,共6页
网络资源的不断膨胀和新旧信息的迅速更迭 ,使传统的手工分检的方法难以适应对海量电子数据的管理需要。Web文档聚类可以快速地将文档进行自动归类 ,并能够发现新的信息资源。针对Web文档数据的复杂性 ,本文提出了通过二次特征提取和聚... 网络资源的不断膨胀和新旧信息的迅速更迭 ,使传统的手工分检的方法难以适应对海量电子数据的管理需要。Web文档聚类可以快速地将文档进行自动归类 ,并能够发现新的信息资源。针对Web文档数据的复杂性 ,本文提出了通过二次特征提取和聚类的方法 ,将Web文档按照主题进行自动聚类。在主题特征被有效提取的同时 ,实现了较高质量的Web文档聚类。 展开更多
关键词 计算机应用 中文信息处理 WEB文档聚类 OPTICS算法 特征提取 K近邻准则 二次特征提取和聚类的方法
在线阅读 下载PDF
高分辨率毫米波雷达目标识别研究 被引量:2
10
作者 栾英宏 李跃华 《兵工学报》 EI CAS CSCD 北大核心 2010年第7期902-905,共4页
利用分数傅里叶变换(FrFT)在时频域对信号的混合表示的特点,将离散分数傅里叶变换(DFrFT)和相关向量机(RVM)应用于毫米波(MMV)高分辨雷达一维距离像识别。使用Fisher准则确定DFrFT的阶数α,将一维距离像进行α阶DFrFT变换,获得信号的特... 利用分数傅里叶变换(FrFT)在时频域对信号的混合表示的特点,将离散分数傅里叶变换(DFrFT)和相关向量机(RVM)应用于毫米波(MMV)高分辨雷达一维距离像识别。使用Fisher准则确定DFrFT的阶数α,将一维距离像进行α阶DFrFT变换,获得信号的特征量,然后利用RVM网络进行分类识别。实验结果表明,该方法是一种可行有效的特征选择方法,具有较高的识别率。 展开更多
关键词 信息处理技术 离散分数傅里叶变换 FISHER准则 相关向量机 特征提取
在线阅读 下载PDF
图正则化稀疏判别非负矩阵分解 被引量:5
11
作者 徐慧敏 陈秀宏 《智能系统学报》 CSCD 北大核心 2019年第6期1217-1224,共8页
非负矩阵分解是一种流行的数据表示方法,利用图正则化约束能有效地揭示数据之间的局部流形结构。为了更好地提取图像特征,给出了一种基于图正则化的稀疏判别非负矩阵分解算法(graph regularization sparse discriminant non-negative ma... 非负矩阵分解是一种流行的数据表示方法,利用图正则化约束能有效地揭示数据之间的局部流形结构。为了更好地提取图像特征,给出了一种基于图正则化的稀疏判别非负矩阵分解算法(graph regularization sparse discriminant non-negative matrix factorization,GSDNMF-L2,1)。利用同类样本之间的稀疏线性表示来构建对应的图及权矩阵;以L2,1范数进行稀疏性约束;以最大间距准则为优化目标函数,利用数据集的标签信息来保持数据样本之间的流形结构和特征的判别性,并给出了算法的迭代更新规则。在若干图像数据集上的实验表明,GSDNMF-L2,1在特征提取方面的分类精度优于各对比算法。 展开更多
关键词 非负矩阵分解 特征提取 降维 流形学习 最大间距准则 判别信息 稀疏约束 线性表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部