期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
多分支特征融合分类网络用于CXR图像识别 被引量:1
1
作者 苏华强 雷海军 雷柏英 《信号处理》 北大核心 2025年第2期253-266,共14页
COVID-19是由新型冠状病毒引起的一种传染性疾病,给全球公共卫生带来了巨大的挑战。在临床实践中,胸部X射线(Chest X-ray,CXR)检查是识别COVID-19感染和其他常见肺部疾病的重要手段,然而放射科医生对COVID-19患者进行检查需要耗费大量... COVID-19是由新型冠状病毒引起的一种传染性疾病,给全球公共卫生带来了巨大的挑战。在临床实践中,胸部X射线(Chest X-ray,CXR)检查是识别COVID-19感染和其他常见肺部疾病的重要手段,然而放射科医生对COVID-19患者进行检查需要耗费大量时间和精力,而且增加医生感染的风险。因此,能够从胸部X射线的图像中,自动识别COVID-19的算法显得尤为重要。本文提出了一种基于深度学习的CXR图像分类框架,该框架能够在有限的训练数据下生成更具判别力的特征。具体而言,首先通过残差神经网络(ResNet34和ResNet50)和Transformer组成多分支分类网络,其中ResNet分支通过深度残差结构,有效地提取丰富的语义信息和细腻的纹理信息;而Transformer分支则通过自注意力机制,捕捉图像的全局语义特征。随后,利用特征交互模块将ResNet分支提取丰富的语义信息和纹理信息,与Transformer提取的全局语义特征进行特征交互。最后,再通过特征融合模块来提取图像的多尺度语义特征。该方法能够在有限训练数据的条件下提取多尺度特征表示,以对COVID-19感染区域进行特征提取和定位。实验在公开DLAI3和COVIDx数据集上与15种方法进行了比较,相比于ResNet50的模型,准确率分别提高了1.37%和0.76%。本文提出的分类方法,结合ResNet和Transformer网络在特征提取上的优点,使得网络对CXR图像的识别结果更加准确。 展开更多
关键词 胸部X射线检查 特征交互模块 多分支分类网络 残差神经网络 TRANSFORMER
在线阅读 下载PDF
基于孪生网络的特征融合位移RGB-T目标跟踪
2
作者 李海燕 曹永辉 +1 位作者 郎恂 李海江 《湖南大学学报(自然科学版)》 北大核心 2025年第4期68-78,共11页
为解决现有目标跟踪算法深层次特征提取困难、不能充分利用跨模态信息以及目标特征表示较弱等问题,提出了基于孪生网络的特征融合位移RGB-T目标跟踪算法.首先,基于可见光模态SiameseRPN++的目标跟踪框架,扩展设计红外模态分支,以获得多... 为解决现有目标跟踪算法深层次特征提取困难、不能充分利用跨模态信息以及目标特征表示较弱等问题,提出了基于孪生网络的特征融合位移RGB-T目标跟踪算法.首先,基于可见光模态SiameseRPN++的目标跟踪框架,扩展设计红外模态分支,以获得多模态目标跟踪框架,设计了改进步长的ResNet50作为特征提取网络,有效挖掘目标的深层次特征.随后,设计特征交互学习模块,利用一种模态的判别信息引导另一种模态的目标外观特征学习,挖掘特征空间和通道中的跨模态信息,增强网络对前景信息的关注.然后,设计多模特征融合模块计算输入的可见光图像和红外图像的特征融合度,对不同模态的重要特征进行空间融合以去除冗余信息,并采用级联融合策略重建多模态图像,增强目标特征表示.最后,设计特征空间位移模块,分割红外模态分支的特征图并向四个不同方向移位,增强热源目标特征的边缘表示.在两个RGB-T数据集上的实验验证了提出算法的有效性,消融实验证明了设计的单个模块的优越性. 展开更多
关键词 RGB-T跟踪 多模特征融合模块 特征空间位移模块 特征交互学习模块
在线阅读 下载PDF
基于平行交互注意力网络的中文电子病历实体及关系联合抽取 被引量:2
3
作者 李丽双 王泽昊 +1 位作者 秦雪洋 袁光辉 《中文信息学报》 CSCD 北大核心 2024年第6期108-118,共11页
基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性... 基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性,在多个标准的医学和通用数据集上取得最优结果;当前中文医学实体及关系标注数据集较少,该文基于中文电子病历构建了实体和关系抽取数据集(CEMRIE),与医学专家共同制定了语料标注规范,并基于该文所提出的模型实验得出基准结果。 展开更多
关键词 实体关系联合抽取 双向特征交互模块 自注意力机制 中文电子病历 数据集标注与构建
在线阅读 下载PDF
基于特征聚合与多元协同特征交互的航拍图像小目标检测 被引量:13
4
作者 陈朋磊 王江涛 +1 位作者 张志伟 何程 《电子测量与仪器学报》 CSCD 北大核心 2023年第10期183-192,共10页
针对无人机航拍图像目标尺寸太小、包含的特征信息较少,导致现有的检测算法对小目标检测效果不理想的问题,提出一种基于特征聚合与多元协同特征交互的无人机航拍图像小目标检测算法。首先,针对主干网对特征提取不足的问题,采用Swin Tran... 针对无人机航拍图像目标尺寸太小、包含的特征信息较少,导致现有的检测算法对小目标检测效果不理想的问题,提出一种基于特征聚合与多元协同特征交互的无人机航拍图像小目标检测算法。首先,针对主干网对特征提取不足的问题,采用Swin Transformer作为RetinaNet主干网络,以增强算法对全局信息的提取能力。其次,为提高网络对远处目标即小目标的检测能力,设计出一种高效的小目标特征聚合网络(SFANet),实现对浅层特征图小目标细节信息的充分整合。最后,为进一步提高网络对多尺度目标的检测性能,使低层特征信息流向高层,提出全新的多元协同特征交互模板(MCFIM)。在公开无人机航拍数据集VisDrone2019-DET上的实验结果表明,所提算法相较于原RetinaNet基线网络检测精度提高7.6%,对于小目标具有更好的检测效果。 展开更多
关键词 小目标检测 航拍图像 小目标特征聚合网络 多元协同特征交互模块
在线阅读 下载PDF
基于单目相机的复杂场景深度估计网络
5
作者 陈占国 陈振军 +4 位作者 薛晨霞 王国亮 李金峄 李玉廷 于保才 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期505-512,共8页
为提升复杂多变场景下深度估计的精度,提出一种基于U型编码器-解码器的单目深度估计网络。采用Swin Transformer架构作为编码器核心,实现对输入数据多层级、多尺度的精细化特征提取。采用逐层扩张卷积提取多尺度局部特征,通过特征交互... 为提升复杂多变场景下深度估计的精度,提出一种基于U型编码器-解码器的单目深度估计网络。采用Swin Transformer架构作为编码器核心,实现对输入数据多层级、多尺度的精细化特征提取。采用逐层扩张卷积提取多尺度局部特征,通过特征交互模块交互局部和全局特征,实现对复杂场景的更全面理解。采用对称式Transformer解码器并结合图像块扩展层将相邻维度的特征图重塑为更高分辨率的特征图,最终输出像素级深度预测结果。在NYU Depth v2数据集和KITTI数据集上进行定量实验。研究结果表明:该网络在复杂多变场景中具有高效性和实用性。研究方法突破了传统方法在复杂多变场景下的局限性,为深度估计的理论研究提供新的视角和方法。 展开更多
关键词 单目深度估计 U型编码器-解码器 逐层扩张卷积 特征交互模块 对称式Transformer解码器
在线阅读 下载PDF
注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
6
作者 张志远 胡冀苏 +3 位作者 张跃跃 钱旭升 周志勇 戴亚康 《上海交通大学学报》 北大核心 2025年第8期1216-1224,共9页
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤... 基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和(91.86±2.18)%,优于经典的单任务分类方法和多任务方法. 展开更多
关键词 前列腺癌盆腔淋巴结转移 多任务学习 多分支各向异性大核注意力模块 多尺度特征交互融合注意力模块 多参数磁共振
在线阅读 下载PDF
基于深度多任务学习的图像美感与情感联合预测研究 被引量:4
7
作者 申朕 崔超然 +3 位作者 董桂鑫 余俊 黄瑾 尹义龙 《软件学报》 EI CSCD 北大核心 2023年第5期2494-2506,共13页
图像美学评价和情感分析任务旨在使计算机可以辨认人类由受到图像视觉刺激而产生的审美和情感反应.现有研究通常将它们当作两个相互独立的任务.但是,人类的美感与情感反应并不是孤立出现的;相反,在心理认知层面上,两种感受的出现应是相... 图像美学评价和情感分析任务旨在使计算机可以辨认人类由受到图像视觉刺激而产生的审美和情感反应.现有研究通常将它们当作两个相互独立的任务.但是,人类的美感与情感反应并不是孤立出现的;相反,在心理认知层面上,两种感受的出现应是相互关联和相互影响的.受此启发,采用深度多任务学习方法在统一的框架下处理图像美学评价和情感分析任务,深入探索两个任务间的内在关联.具体来说,提出一种自适应特征交互模块将两个单任务的基干网络进行关联,以完成图像美学评价和情感分析任务的联合预测.该模块中引入了一种特征动态交互机制,可以根据任务间的特征依赖关系自适应地决定任务间需要进行特征交互的程度.在多任务网络结构的参数更新过程中,根据美学评价与情感分析任务的学习复杂度和收敛速度等差异,提出一种任务间梯度平衡策略,以保证各个任务可以在联合预测的框架下平衡学习.此外,构建了一个大规模的图像美学情感联合数据集UAE.据已有研究,该数据集是首个同时包含美感和情感标签的图像集合.本模型代码以及UAE数据集已经公布在https://github.com/zhenshen-mla/Aesthetic-Emotion-Dataset. 展开更多
关键词 图像美学评价 图像情感分析 深度多任务学习 自适应特征交互模块 任务间梯度平衡策略
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部