期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于层次图神经网络和差异化特征学习的客户流失预测模型
1
作者
卢燕群
赵奕奕
《计算机应用》
北大核心
2025年第9期3057-3066,共10页
针对普惠金融领域客户流失问题的严峻性及现有客户挽留模型在预测精度与可解释性上的不足,提出一种基于层次图神经网络(HGNN)和差异化特征学习(SFL)的客户流失预测模型HGNN-SFLN(HGNN-SFL Network),以提升模型的预测能力和对特征交互的...
针对普惠金融领域客户流失问题的严峻性及现有客户挽留模型在预测精度与可解释性上的不足,提出一种基于层次图神经网络(HGNN)和差异化特征学习(SFL)的客户流失预测模型HGNN-SFLN(HGNN-SFL Network),以提升模型的预测能力和对特征交互的理解。首先,为了应对数据不平衡问题,提出一种混合采样策略,并在特征层面对不同类别的特征进行加权调整,以确保各类数据的有效利用;其次,利用层次图强化不同特征之间的关联性,并构建一种基于自注意力机制的SFL模块,以增强模型对分类特征的处理能力及特征交互关系的解析能力。通过该模块,模型能够精准识别关键特征,并有效捕捉它们之间的复杂交互关系,从而优化预测决策过程。实验结果表明,所提模型在多个真实金融数据集上相较于主流模型,如Light GBM(Light Gradient Boosting Machine)和深度神经网络(DNN),在曲线下面积(AUC)等关键指标上都取得了最优结果,并且在精确识别关键流失特征以及有效捕捉特征间的复杂交互关系方面,相较于对比模型展现出显著的优势。
展开更多
关键词
客户流失预测
数据不平衡
特征交互建模
差异化
特征
层次图神经网络
在线阅读
下载PDF
职称材料
基于GFU和分层LSTM的组群行为识别研究方法
被引量:
5
2
作者
王传旭
薛豪
《电子学报》
EI
CAS
CSCD
北大核心
2020年第8期1465-1471,共7页
提出一种以"关键人物"为核心,使用门控融合单元(GFU,Gated Fusion Unit)进行特征融合的组群行为识别框架,旨在解决两个问题:①组群行为信息冗余,重点关注关键人物行为特征,忽略无关人员对组群行为的影响;②组群内部交互行为复...
提出一种以"关键人物"为核心,使用门控融合单元(GFU,Gated Fusion Unit)进行特征融合的组群行为识别框架,旨在解决两个问题:①组群行为信息冗余,重点关注关键人物行为特征,忽略无关人员对组群行为的影响;②组群内部交互行为复杂,使用GFU有效融合以关键人物为核心的交互特征,再通过LSTM时序建模成为表征能力更强的组群特征.最终,通过softmax分类器进行组群行为类别分类.该算法在排球数据集上取得了86.7%的平均识别率.
展开更多
关键词
组群行为识别
关键人物
建
模
交互
特征
建
模
门控融合单元
在线阅读
下载PDF
职称材料
题名
基于层次图神经网络和差异化特征学习的客户流失预测模型
1
作者
卢燕群
赵奕奕
机构
成都行政学院
西南财经大学大数据研究院
出处
《计算机应用》
北大核心
2025年第9期3057-3066,共10页
基金
教育部人文社会科学规划基金资助项目(21YJA630122)。
文摘
针对普惠金融领域客户流失问题的严峻性及现有客户挽留模型在预测精度与可解释性上的不足,提出一种基于层次图神经网络(HGNN)和差异化特征学习(SFL)的客户流失预测模型HGNN-SFLN(HGNN-SFL Network),以提升模型的预测能力和对特征交互的理解。首先,为了应对数据不平衡问题,提出一种混合采样策略,并在特征层面对不同类别的特征进行加权调整,以确保各类数据的有效利用;其次,利用层次图强化不同特征之间的关联性,并构建一种基于自注意力机制的SFL模块,以增强模型对分类特征的处理能力及特征交互关系的解析能力。通过该模块,模型能够精准识别关键特征,并有效捕捉它们之间的复杂交互关系,从而优化预测决策过程。实验结果表明,所提模型在多个真实金融数据集上相较于主流模型,如Light GBM(Light Gradient Boosting Machine)和深度神经网络(DNN),在曲线下面积(AUC)等关键指标上都取得了最优结果,并且在精确识别关键流失特征以及有效捕捉特征间的复杂交互关系方面,相较于对比模型展现出显著的优势。
关键词
客户流失预测
数据不平衡
特征交互建模
差异化
特征
层次图神经网络
Keywords
customer churn prediction
data imbalance
feature interaction modeling
specific feature
Hierarchical Graph Neural Network(HGNN)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于GFU和分层LSTM的组群行为识别研究方法
被引量:
5
2
作者
王传旭
薛豪
机构
青岛科技大学信息科学技术学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2020年第8期1465-1471,共7页
基金
国家自然科学基金(No.61672305)。
文摘
提出一种以"关键人物"为核心,使用门控融合单元(GFU,Gated Fusion Unit)进行特征融合的组群行为识别框架,旨在解决两个问题:①组群行为信息冗余,重点关注关键人物行为特征,忽略无关人员对组群行为的影响;②组群内部交互行为复杂,使用GFU有效融合以关键人物为核心的交互特征,再通过LSTM时序建模成为表征能力更强的组群特征.最终,通过softmax分类器进行组群行为类别分类.该算法在排球数据集上取得了86.7%的平均识别率.
关键词
组群行为识别
关键人物
建
模
交互
特征
建
模
门控融合单元
Keywords
group behavior recognition
key person modeling
interaction feature modeling
gated fusion unit
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于层次图神经网络和差异化特征学习的客户流失预测模型
卢燕群
赵奕奕
《计算机应用》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于GFU和分层LSTM的组群行为识别研究方法
王传旭
薛豪
《电子学报》
EI
CAS
CSCD
北大核心
2020
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部