期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于层次图神经网络和差异化特征学习的客户流失预测模型
1
作者 卢燕群 赵奕奕 《计算机应用》 北大核心 2025年第9期3057-3066,共10页
针对普惠金融领域客户流失问题的严峻性及现有客户挽留模型在预测精度与可解释性上的不足,提出一种基于层次图神经网络(HGNN)和差异化特征学习(SFL)的客户流失预测模型HGNN-SFLN(HGNN-SFL Network),以提升模型的预测能力和对特征交互的... 针对普惠金融领域客户流失问题的严峻性及现有客户挽留模型在预测精度与可解释性上的不足,提出一种基于层次图神经网络(HGNN)和差异化特征学习(SFL)的客户流失预测模型HGNN-SFLN(HGNN-SFL Network),以提升模型的预测能力和对特征交互的理解。首先,为了应对数据不平衡问题,提出一种混合采样策略,并在特征层面对不同类别的特征进行加权调整,以确保各类数据的有效利用;其次,利用层次图强化不同特征之间的关联性,并构建一种基于自注意力机制的SFL模块,以增强模型对分类特征的处理能力及特征交互关系的解析能力。通过该模块,模型能够精准识别关键特征,并有效捕捉它们之间的复杂交互关系,从而优化预测决策过程。实验结果表明,所提模型在多个真实金融数据集上相较于主流模型,如Light GBM(Light Gradient Boosting Machine)和深度神经网络(DNN),在曲线下面积(AUC)等关键指标上都取得了最优结果,并且在精确识别关键流失特征以及有效捕捉特征间的复杂交互关系方面,相较于对比模型展现出显著的优势。 展开更多
关键词 客户流失预测 数据不平衡 特征交互建模 差异化特征 层次图神经网络
在线阅读 下载PDF
基于GFU和分层LSTM的组群行为识别研究方法 被引量:5
2
作者 王传旭 薛豪 《电子学报》 EI CAS CSCD 北大核心 2020年第8期1465-1471,共7页
提出一种以"关键人物"为核心,使用门控融合单元(GFU,Gated Fusion Unit)进行特征融合的组群行为识别框架,旨在解决两个问题:①组群行为信息冗余,重点关注关键人物行为特征,忽略无关人员对组群行为的影响;②组群内部交互行为复... 提出一种以"关键人物"为核心,使用门控融合单元(GFU,Gated Fusion Unit)进行特征融合的组群行为识别框架,旨在解决两个问题:①组群行为信息冗余,重点关注关键人物行为特征,忽略无关人员对组群行为的影响;②组群内部交互行为复杂,使用GFU有效融合以关键人物为核心的交互特征,再通过LSTM时序建模成为表征能力更强的组群特征.最终,通过softmax分类器进行组群行为类别分类.该算法在排球数据集上取得了86.7%的平均识别率. 展开更多
关键词 组群行为识别 关键人物 交互特征 门控融合单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部