锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题,提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP:Latent Low-Rank And Sparse Projection)。该算法首先融合低秩约束和正交重构...针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题,提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP:Latent Low-Rank And Sparse Projection)。该算法首先融合低秩约束和正交重构保持数据的主要能量,然后对投影矩阵施加行稀疏约束进行特征选择,使特征更加紧凑和具有可解释性。此外引入l_(2,1)范数对误差分量进行正则化使模型对噪声更具健壮性。最后在低维数据和低秩表示系数矩阵上施加邻域保持正则化以保留数据的局部几何结构。公开数据集上的大量实验结果表明,所提方法与其他先进算法相比具有更好的性能。展开更多
文摘针对潜在低秩表示学习的投影矩阵不能解释提取特征重要程度和保持数据的局部几何结构的问题,提出了一种基于双邻域和特征选择的潜在低秩稀疏投影算法(LLRSP:Latent Low-Rank And Sparse Projection)。该算法首先融合低秩约束和正交重构保持数据的主要能量,然后对投影矩阵施加行稀疏约束进行特征选择,使特征更加紧凑和具有可解释性。此外引入l_(2,1)范数对误差分量进行正则化使模型对噪声更具健壮性。最后在低维数据和低秩表示系数矩阵上施加邻域保持正则化以保留数据的局部几何结构。公开数据集上的大量实验结果表明,所提方法与其他先进算法相比具有更好的性能。