期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的盾构机土舱压力场预测方法 被引量:3
1
作者 张超 朱闽湘 +2 位作者 郎志雄 陈仁朋 程红战 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第2期307-315,共9页
土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布... 土舱压力是盾构机受力状态和掌子面稳定等核心问题中的关键因素。土舱压力具有显著的空间变异性,其形成演化机制源于装备与岩土之间的复杂耦合作用,与地质特征、掘进参数等多源参数相关。然而,现有土舱压力预测方法一般未考虑空间分布特征或地质参数影响。针对该问题,提出了一种基于空间分布物理特征函数导引深度学习的盾构机土舱压力场预测方法。该方法构建物理特征函数用于解耦土舱压力空间分布特征,采用卷积神经网络和门控循环单元分别提取多源参数历史信息的空间特征和特征系数的时序特征,结合多源参数实时信息对特征系数进行预测,从而实现土舱压力场的预测。以长沙地铁四号线某区段为案例,利用该方法准确预测了土舱压力空间分布实测数据,准确率高达0.98,验证了所提方法的有效性。敏感性分析表明,不同地层中土舱压力空间分布特征系数的主要敏感参数基本一致,但其敏感度随地层地质条件的变化规律差异显著,可为复杂地层盾构机土舱压力精细化调控提供参考。 展开更多
关键词 土舱压力场 卷积神经网络 门控循环单元 物理特征函数 土压平衡盾构机 盾构隧道
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部