增加能源消费侧的运行灵活性是提升电力系统高比例随机波动新能源消纳能力的重要技术手段。建设电、气、热等多种能源互补的能源局域网(energy distribution network,EDN),可在非电能源系统中大规模利用清洁的可再生能源,显著提升电力...增加能源消费侧的运行灵活性是提升电力系统高比例随机波动新能源消纳能力的重要技术手段。建设电、气、热等多种能源互补的能源局域网(energy distribution network,EDN),可在非电能源系统中大规模利用清洁的可再生能源,显著提升电力需求侧的运行灵活性,甚至追踪并响应系统内新能源电源的随机波动。该文探讨EDN这一典型的综合能源系统,较为系统地讨论EDN典型的基础概念、物理架构与多能互补的工作机理。在此基础上,进一步提出EDN的3类工作模式及工作象限,分析其相对于智能电网典型应用的运行特征。面向新能源的大规模消纳难题,该文提出EDN的余量市场模式及其基本的交易流程,分析该交易模式对电力市场改革的积极意义。最后,展望EDN所亟需突破的关键技术问题。展开更多
面对能源短缺、环境污染、气候变化等人类共同的难题,安全高效、清洁低碳、灵活智能已成为能源电力转型发展的大趋势,而以数据深度利用为特征的智能化技术将是未来电力发展的核心领域。该文在前期研究的基础上,对智能发电系统的概念、...面对能源短缺、环境污染、气候变化等人类共同的难题,安全高效、清洁低碳、灵活智能已成为能源电力转型发展的大趋势,而以数据深度利用为特征的智能化技术将是未来电力发展的核心领域。该文在前期研究的基础上,对智能发电系统的概念、体系架构进行了进一步阐述,从数据应用的角度阐明了智能发电的五大数据化特征:泛在感知(数据获取)、信息融合(数据交互)、智能算法(数据监控)、智能管控(数据决策)、全生命周期管理(数据归档)。提出包括智能发电运行控制系统(intelligent control system,ICS)和智能发电公共服务系统(intelligent service system,ISS)的智能发电系统数据应用架构,在此基础上,给出了与2个系统相对应的数据应用功能。展开更多
文摘增加能源消费侧的运行灵活性是提升电力系统高比例随机波动新能源消纳能力的重要技术手段。建设电、气、热等多种能源互补的能源局域网(energy distribution network,EDN),可在非电能源系统中大规模利用清洁的可再生能源,显著提升电力需求侧的运行灵活性,甚至追踪并响应系统内新能源电源的随机波动。该文探讨EDN这一典型的综合能源系统,较为系统地讨论EDN典型的基础概念、物理架构与多能互补的工作机理。在此基础上,进一步提出EDN的3类工作模式及工作象限,分析其相对于智能电网典型应用的运行特征。面向新能源的大规模消纳难题,该文提出EDN的余量市场模式及其基本的交易流程,分析该交易模式对电力市场改革的积极意义。最后,展望EDN所亟需突破的关键技术问题。
文摘面对能源短缺、环境污染、气候变化等人类共同的难题,安全高效、清洁低碳、灵活智能已成为能源电力转型发展的大趋势,而以数据深度利用为特征的智能化技术将是未来电力发展的核心领域。该文在前期研究的基础上,对智能发电系统的概念、体系架构进行了进一步阐述,从数据应用的角度阐明了智能发电的五大数据化特征:泛在感知(数据获取)、信息融合(数据交互)、智能算法(数据监控)、智能管控(数据决策)、全生命周期管理(数据归档)。提出包括智能发电运行控制系统(intelligent control system,ICS)和智能发电公共服务系统(intelligent service system,ISS)的智能发电系统数据应用架构,在此基础上,给出了与2个系统相对应的数据应用功能。