期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于概念性水文模型与长短时记忆模型耦合的汉江上游流域径流模拟
1
作者 邓超 孙培源 +2 位作者 尹鑫 邹佳成 王卫光 《湖泊科学》 EI CAS 北大核心 2025年第1期279-292,共14页
为了探究概念性水文模型(GR4J)与长短时记忆模型(LSTM)耦合过程中物理模型参数反馈机制以及考虑土壤含水量作为中间变量对物理引导机器学习(PIML)模型径流模拟的影响,本研究构建了PIML模型并设置考虑参数反馈、考虑中间变量和两者同时... 为了探究概念性水文模型(GR4J)与长短时记忆模型(LSTM)耦合过程中物理模型参数反馈机制以及考虑土壤含水量作为中间变量对物理引导机器学习(PIML)模型径流模拟的影响,本研究构建了PIML模型并设置考虑参数反馈、考虑中间变量和两者同时考虑的3种方案(依次简称为H1、H2、H3),以安康站为控制站的汉江上游流域开展实例研究。结果表明:(1)3种PIML模型径流模拟效果均优于LSTM模型,其中验证期纳什系数(NSE)平均提升10.6%,而PIML-H1与PIML-H3模型径流模拟效果优于GR4J模型,验证期NSE平均提升4.2%,其中PIML-H3模型在3种PIML模型中表现最佳,表明基于LSTM和GR4J模型构建的PIML模型对径流模拟效果有所改善,且同时考虑中间变量和参数反馈因素时对径流模拟效果改善最佳;(2)3种PIML模型对低水流量的模拟效果均优于GR4J和LSTM模型,且PIML-H3模型效果最佳,而对于高水流量,3种PIML模型均表现不佳,说明PIML模型往往在模拟低流量事件中更占优势;(3)3种PIML模型的径流模拟效果均表现出较强的季节性变化,PIML-H2和PIML-H3模型相较于PIML-H1模型受到的季节性变化影响更为明显,说明PIML模型模拟径流结果的季节性变化受到中间变量的影响。研究可为汉江上游流域径流模拟预报提供技术支撑。 展开更多
关键词 物理引导机器学习 径流模拟 中间变量 GR4J LSTM 汉江
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部