期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于物理信息神经网络的长距离顶管施工顶力预测
1
作者 李博 刘宇翔 +2 位作者 陈建国 杨耀红 张哲 《人民长江》 北大核心 2025年第1期147-155,共9页
长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网... 长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网络的训练机制,并引入改进的麻雀搜索算法(ISSA)对模型超参数取值进行优化,建立了ISSA-PINN顶管施工顶力预测模型;以河南省郑开同城东部供水工程顶管施工为例,选取524组工程实测数据验证了模型的有效性。计算结果表明:ISSA-PINN模型具有较高的预测精度,相较于单纯数据驱动模型,在测试集和新数据集中的预测性能分别提升了0.07和0.17,说明物理模型的融入对降低机器模型的过拟合风险和提高泛化能力有积极影响;相比于SSA和粒子群算法,ISSA算法寻优速度更快、适应度更好。研究结果可为顶管工程施工顶力控制提供参考。 展开更多
关键词 顶管施工 顶力预测 物理信息神经网络(pinn) 改进麻雀搜索算法(ISSA)
在线阅读 下载PDF
基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测 被引量:11
2
作者 潘秋景 吴洪涛 +1 位作者 张子龙 宋克志 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期539-551,共13页
复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘... 复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。 展开更多
关键词 物理信息神经网络(pinn) 盾构隧道 地表沉降 机器学习 数据物理驱动
在线阅读 下载PDF
物理信息神经网络求解五阶emKdV方程的正反问题
3
作者 吴泽康 王晓丽 +1 位作者 韩文静 李金红 《数学物理学报(A辑)》 CSCD 北大核心 2024年第2期484-499,共16页
该文利用物理信息神经网络(PINNs)对扩展的五阶mKdV(emKdV)方程的正反问题进行求解,并对孤子的动力学行为进行分析、模拟.针对正问题,选用双曲正切函数tanh作为激活函数求解方程的一、二、三孤子解,并将PINNs方法求得的数据驱动解与借... 该文利用物理信息神经网络(PINNs)对扩展的五阶mKdV(emKdV)方程的正反问题进行求解,并对孤子的动力学行为进行分析、模拟.针对正问题,选用双曲正切函数tanh作为激活函数求解方程的一、二、三孤子解,并将PINNs方法求得的数据驱动解与借助简化的Hirota方法给出的方程精确解进行比较,一孤子解的精度为O(10^(-4)),二、三孤子解的精度为O(10^(-3)).针对反问题,分别由一、二、三孤子解的数据进行驱动求解方程的两个待定系数,并在不同的噪声下探究算法的鲁棒性.当在训练数据中加入1%的初始噪声或观测噪声时,待求系数的预测精度可分别达到O(10^(-3))和O(10^(-2));当加入3%的初始噪声或观测噪声时,预测精度依然可以达到O(10^(-2));由实验数据分析可知观测噪声对PINNs模型的影响要略大于初始噪声. 展开更多
关键词 物理信息神经网络 五阶emKdV方程 数据驱动 非线性动力学
在线阅读 下载PDF
基于物理信息驱动神经网络的三维初至波旅行时计算方法
4
作者 都国宁 谭军 +2 位作者 宋鹏 解闯 王绍文 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期9-20,共12页
在地震勘探中,初至波旅行时的精确求取是偏移成像和旅行时反演等处理技术的重要基础。基于程函方程的有限差分算法在地震波旅行时求取中展现出良好的效果,但需要付出巨大的计算成本,尤其是对多震源、高密度网格的旅行时计算。为此,提出... 在地震勘探中,初至波旅行时的精确求取是偏移成像和旅行时反演等处理技术的重要基础。基于程函方程的有限差分算法在地震波旅行时求取中展现出良好的效果,但需要付出巨大的计算成本,尤其是对多震源、高密度网格的旅行时计算。为此,提出了一种基于物理信息驱动神经网络(PINN)的三维程函方程旅行时求取算法,由三维程函方程及其物理条件信息构成损失函数,再通过最小化该损失函数训练神经网络,最终输出满足程函方程的旅行时结果。不同速度模型的数值模拟实验结果表明,所提方法相对于传统算法具有更高的计算效率和更高的精确度。 展开更多
关键词 旅行时 程函方程 物理信息驱动神经网络(pinn) 深度学习 有限差分
在线阅读 下载PDF
基于物理信息神经网络的Burgers-Fisher方程求解方法 被引量:5
5
作者 徐健 朱海龙 +1 位作者 朱江乐 李春忠 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第11期2160-2169,共10页
为了探索基于物理信息的神经网络(PINN)求解微分方程时,物理信息在训练神经网络中的作用,提出将物理信息分为规律信息和数值信息2类,以阐释PINN求解微分方程的逻辑,以及物理信息的数据驱动方式和神经网络可解释性.设计基于2类信息的神... 为了探索基于物理信息的神经网络(PINN)求解微分方程时,物理信息在训练神经网络中的作用,提出将物理信息分为规律信息和数值信息2类,以阐释PINN求解微分方程的逻辑,以及物理信息的数据驱动方式和神经网络可解释性.设计基于2类信息的神经网络综合损失函数,并从训练采样和训练强度2方面建立信息的训练平衡度,从而利用PINN求解Burgers-Fisher方程.实验表明,PINN能够获得较好的方程求解精度和稳定性;在求解方程的神经网络训练中,Burgers-Fisher方程的数值信息比规律信息能更好地促进神经网络逼近方程解;随着训练采样和迭代次数的增加,以及2类信息的平衡,神经网络训练效果得到提高;增加神经网络规模可以提高方程求解精度,但也增加了网络训练迭代时间,在固定训练时间下并非神经网络规模越大效果越好. 展开更多
关键词 BURGERS-FISHER方程 基于物理信息神经网络 规律信息 数值信息 数据驱动 可解释性 训练平衡度
在线阅读 下载PDF
采用混合粗糙数据物理信息神经网络的扑翼气动性能预测方法
6
作者 胡付佳 周逸伦 刘小民 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第11期194-205,共12页
为解决时空尺度上扑翼流动控制方程求解需要花费大量时间和计算资源的问题,基于强非线性曲线拟合能力的物理信息神经网络(PINN)深度学习方法,提出了一种混合粗糙数据驱动物理信息神经网络模型(HCDD-PINN),研究了模型对涉及非定常流动特... 为解决时空尺度上扑翼流动控制方程求解需要花费大量时间和计算资源的问题,基于强非线性曲线拟合能力的物理信息神经网络(PINN)深度学习方法,提出了一种混合粗糙数据驱动物理信息神经网络模型(HCDD-PINN),研究了模型对涉及非定常流动特征和动边界二维俯仰扑翼问题的训练和预测性能。通过使用相较于传统计算流体动力学方法(CFD)更为粗糙的数据驱动模型训练,将扑翼流动控制方程嵌入神经网络损失中,并施加初始条件和边界条件约束,采用一阶自适应矩优化算法(ADAM)和二阶拟牛顿法优化算法(L-BFGS-B),以前馈-反向传播方式最小化模型损失函数,从而提高模型预测控制方程数值解的准确性和可靠性。结果表明:与原始PINN模型相比,HCDD-PINN模型显著降低了流场的预测误差,能够准确地预测扑翼瞬时气动力和瞬时速度及压力场,训练时间缩短了75%。此外,训练完成的HCDD-PINN模型可以快速获得流场任意时刻的物理信息,而传统CFD方法则需要重新对流场进行计算。该研究为求解扑翼流动控制方程乃至流体非线性偏微分方程组(PDEs)提供了一种有效的替代方案。 展开更多
关键词 物理信息神经网络 数据驱动 深度学习 扑翼 气动性能
在线阅读 下载PDF
PINNs算法及其在岩土工程中的应用研究 被引量:8
7
作者 兰鹏 李海潮 +2 位作者 叶新宇 张升 盛岱超 《岩土工程学报》 EI CAS CSCD 北大核心 2021年第3期586-592,F0002,F0003,共9页
物理信息神经网络(PINNs)算法采用自动微分方法将偏微分方程直接嵌入神经网络中,从而实现对偏微分方程的智能求解,属于一种新型的无网格算法,具有收敛速度快和计算精度高等优点。PINNs不仅能够实现对偏微分方程求解,还能够对偏微分方程... 物理信息神经网络(PINNs)算法采用自动微分方法将偏微分方程直接嵌入神经网络中,从而实现对偏微分方程的智能求解,属于一种新型的无网格算法,具有收敛速度快和计算精度高等优点。PINNs不仅能够实现对偏微分方程求解,还能够对偏微分方程未知参数进行反演,因此对岩土工程复杂问题具有广泛的应用前景。为了验证PINNs算法在岩土工程领域的可行性,对连续排水边界条件下的一维固结理论进行求解和界面参数反演。计算结果表明,PINNs数值结果与解析解具有高度一致性,且界面参数反演结果准确,说明PINNs算法能够为岩土工程相关问题提供新的求解思路。 展开更多
关键词 物理信息神经网络(pinns) 自动微分 无网格算法 参数反演 连续排水边界条件
在线阅读 下载PDF
基于晶体塑性力学框架的材料本构行为智能预测研究
8
作者 翁焕博 罗诚 袁荒 《力学学报》 EI CAS CSCD 北大核心 2024年第12期3468-3483,共16页
人工神经网络(ANNs)已逐渐成为非线性材料多尺度本构建模的重要工具.针对航空航天领域中广泛使用的镍基单晶合金开发了基于晶体塑性框架的材料本构行为智能预测方法.提出的新方法在数据驱动的基础上结合了晶体塑性本构模型,保留了晶体... 人工神经网络(ANNs)已逐渐成为非线性材料多尺度本构建模的重要工具.针对航空航天领域中广泛使用的镍基单晶合金开发了基于晶体塑性框架的材料本构行为智能预测方法.提出的新方法在数据驱动的基础上结合了晶体塑性本构模型,保留了晶体滑移系的求解框架,将激活滑移系上的状态变量作为网络的输入,建立了状态变量和滑移系剪切应变增量的物理联系,引入了物理信息损失函数,实现了应力的隐式求解,从而准确预测了单晶材料的单调、循环力学行为.进一步地,探究了不同损失函数对模型训练结果的影响,明确指出数据和物理约束共同作用下的模型性能显著提升.物理信息的融入在一定程度上提升了模型的外插预测精度,但在训练样本稀疏区域仍然无法做到精确预测.为了解决在训练样本稀疏区域难以精确预测的问题,在常规的离线学习策略上提出了在线学习策略,使得神经网络模型根据残差大小进行自学习,最终达到传统本构模型的预测精度.提出的基于神经网络的晶体塑性本构行为预测框架为材料本构关系研究领域提供了创新且有效的思路,有望进一步推动复杂材料的多尺度本构模型研究. 展开更多
关键词 循环晶体塑性 镍基单晶合金 物理信息神经网络(pinn) 取向敏感性 在线学习机制
在线阅读 下载PDF
热试检测技术在汽车发动机测试中的创新应用
9
作者 田莉 房双喜 +1 位作者 赵彦赫 刘映涛 《汽车与新动力》 2024年第6期60-62,共3页
阐述了热试检测技术在汽车发动机测试方面的创新应用。所引入的高精度光纤光栅传感器可实现温度的实时监测,全方位三维热成像分析技术可突破热分布测量的局限性,以及基于物理信息神经网络(PINN)的动态热应力预测方法能够解决热应力评估... 阐述了热试检测技术在汽车发动机测试方面的创新应用。所引入的高精度光纤光栅传感器可实现温度的实时监测,全方位三维热成像分析技术可突破热分布测量的局限性,以及基于物理信息神经网络(PINN)的动态热应力预测方法能够解决热应力评估的滞后问题。上述创新技术的集成应用大幅提升了发动机热性能评估的准确性和全面性,为发动机的设计优化、性能提升和可靠性保障提供了强有力的数据支撑。 展开更多
关键词 热试检测技术 汽车发动机 物理信息神经网络(pinn) 光纤光栅(FBG)传感器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部