随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动...随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动态交通路网模型,量化了不同类型的城市道路对物流车辆调度与路径规划的影响,以燃油、时间窗、司机等综合成本最低为目标,建立了考虑城市道路分级与动态交通路网的动态车辆路径问题(DVRP-RD,Dynamic Vehicle Route Problem with Road Condition)的两阶段混合整数模型,改进了遗传算法对其进行求解.最后,以深圳市的南山区与宝安区的真实路网为例,模拟了不同规模的客户需求与3种不同的动态更新机制,实验结果表明该方案与模型可以有效的为物流企业降低城市物流配送成本、提高调度效率与改善服务质量.展开更多
针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and im...针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。展开更多
文摘随着经济的发展,城市交通路网拓扑的日益复杂且交通状况突发多变,传统的设定客户间道路唯一且通行状态不变的动态车辆路径规划模型很难有效指导物流企业进行物流配送作业.本文利用智慧交通系统,结合物流配送作业需求,构建了分时段的动态交通路网模型,量化了不同类型的城市道路对物流车辆调度与路径规划的影响,以燃油、时间窗、司机等综合成本最低为目标,建立了考虑城市道路分级与动态交通路网的动态车辆路径问题(DVRP-RD,Dynamic Vehicle Route Problem with Road Condition)的两阶段混合整数模型,改进了遗传算法对其进行求解.最后,以深圳市的南山区与宝安区的真实路网为例,模拟了不同规模的客户需求与3种不同的动态更新机制,实验结果表明该方案与模型可以有效的为物流企业降低城市物流配送成本、提高调度效率与改善服务质量.
文摘针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。