Microseismic effects during the transmission of seismic waves in coal and rock mass associated with mining operation were studied by on-site blasting tests and microseismic monitoring in LW704 of Southern Colliery,Aus...Microseismic effects during the transmission of seismic waves in coal and rock mass associated with mining operation were studied by on-site blasting tests and microseismic monitoring in LW704 of Southern Colliery,Australia,by using spread velocities,amplitudes and frequency contents as the main analysis parameters.The results show that the average P-wave velocity,mean values of combined maximal amplitudes and frequencies of the first arrivals are all reduced significantly along with goaf expanding and intensity weakening of overlying strata during mining process.A full roof fracturing can make the average P-wave velocities,combined maximal amplitudes and frequencies of first arrivals reduce to about 69.8%,92.2% and 60.0%,respectively.The reduction of the above seismic parameters reveals dynamic effects of the variation of strata structure and property to the wave transmission and energy dissipation of blasting wave.The research greatly benefits further study on stability of surrounding rock under the destructive effort by mine tremor,blasting,etc,and provides experimental basis for source relocation and parameter optimization of seismic monitoring as well.展开更多
In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points betwee...In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.展开更多
基金Foundation item: Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(2010QNA30) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education,ChinaProjects(SZBF2011-6-B35,2012BAK04B06) supported by the National Twelfth Five-year Key Science & Technology Foundation of China
文摘Microseismic effects during the transmission of seismic waves in coal and rock mass associated with mining operation were studied by on-site blasting tests and microseismic monitoring in LW704 of Southern Colliery,Australia,by using spread velocities,amplitudes and frequency contents as the main analysis parameters.The results show that the average P-wave velocity,mean values of combined maximal amplitudes and frequencies of the first arrivals are all reduced significantly along with goaf expanding and intensity weakening of overlying strata during mining process.A full roof fracturing can make the average P-wave velocities,combined maximal amplitudes and frequencies of first arrivals reduce to about 69.8%,92.2% and 60.0%,respectively.The reduction of the above seismic parameters reveals dynamic effects of the variation of strata structure and property to the wave transmission and energy dissipation of blasting wave.The research greatly benefits further study on stability of surrounding rock under the destructive effort by mine tremor,blasting,etc,and provides experimental basis for source relocation and parameter optimization of seismic monitoring as well.
基金Projects(50278057) supported by the National Natural Science Foundation of China project(2002CB412703) supported by Major State Basic Research Development Program of China
文摘In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.