氢气在实际应用中存在着许多负压场景,确定负压工况下的燃爆参数是对氢气进行科学评估和有效防控的首要前提。采用高精度配气及爆炸压力采集系统研究氢气在负压场景下的燃爆特性,明确氢气的爆炸上限、爆炸下限、临界爆炸压力、最大爆炸...氢气在实际应用中存在着许多负压场景,确定负压工况下的燃爆参数是对氢气进行科学评估和有效防控的首要前提。采用高精度配气及爆炸压力采集系统研究氢气在负压场景下的燃爆特性,明确氢气的爆炸上限、爆炸下限、临界爆炸压力、最大爆炸压力、最大爆炸升压比等燃爆参数;并通过Python中的Matplotlib等软件库对试验数据进行拟合,分析压力对氢气燃爆参数的影响。结果表明:在室温、空气条件下,初始压力从100 k Pa降至3.5 k Pa的过程中,爆炸范围不断缩小,特别是从初始压力低于10 k Pa开始,爆炸范围缩小速度明显增加,该现象与分子间距受压力影响的变化趋势存在强关联;当初始压力低至3.72 k Pa时,爆炸上、下限重合在12.58%体积分数的位置,该压力称为临界爆炸压力,低于该压力时体系将失去爆炸性;一般认为最大爆炸压力通常在理论当量体积分数29.6%附近取得,试验发现此规律仅适用于初始压力大≥5 k Pa的场景,当初始压力<5 k Pa时,理论当量体积分数将随着压力的减小而发生改变,逐渐偏离至体积分数10%~15%;最大爆炸升压比会随着初始压力的减小而降低,从常规的7.30降低至4.63,特别是在初始压力<5 k Pa的体系中,该比值大幅降低。展开更多
The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ...The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ was made according to international standard ISO 6184 and American Standard NFPA68. The explosion pressure was picked up by pressure transducer with a dynamic responding time of 0.001 s and recorded by computer. By regressing the experimental data,the relationship of gas cloud explosion pressure to the initial radius of gas cloud and the distance to the center of gas cloud can be obtained. That is p=Ar 2 0/r where A is a constant depending on flammable gas cloud.The damage of unrestricted gas cloud to building structure is discussed based on the strength of houses.展开更多
文摘氢气在实际应用中存在着许多负压场景,确定负压工况下的燃爆参数是对氢气进行科学评估和有效防控的首要前提。采用高精度配气及爆炸压力采集系统研究氢气在负压场景下的燃爆特性,明确氢气的爆炸上限、爆炸下限、临界爆炸压力、最大爆炸压力、最大爆炸升压比等燃爆参数;并通过Python中的Matplotlib等软件库对试验数据进行拟合,分析压力对氢气燃爆参数的影响。结果表明:在室温、空气条件下,初始压力从100 k Pa降至3.5 k Pa的过程中,爆炸范围不断缩小,特别是从初始压力低于10 k Pa开始,爆炸范围缩小速度明显增加,该现象与分子间距受压力影响的变化趋势存在强关联;当初始压力低至3.72 k Pa时,爆炸上、下限重合在12.58%体积分数的位置,该压力称为临界爆炸压力,低于该压力时体系将失去爆炸性;一般认为最大爆炸压力通常在理论当量体积分数29.6%附近取得,试验发现此规律仅适用于初始压力大≥5 k Pa的场景,当初始压力<5 k Pa时,理论当量体积分数将随着压力的减小而发生改变,逐渐偏离至体积分数10%~15%;最大爆炸升压比会随着初始压力的减小而降低,从常规的7.30降低至4.63,特别是在初始压力<5 k Pa的体系中,该比值大幅降低。
文摘The strength of flammable gas cloud explosion has been experimentally researched by means of acetylene-air clouds which were ignited by electric sparks.The ignition device which provides ignition energy of about 100mJ was made according to international standard ISO 6184 and American Standard NFPA68. The explosion pressure was picked up by pressure transducer with a dynamic responding time of 0.001 s and recorded by computer. By regressing the experimental data,the relationship of gas cloud explosion pressure to the initial radius of gas cloud and the distance to the center of gas cloud can be obtained. That is p=Ar 2 0/r where A is a constant depending on flammable gas cloud.The damage of unrestricted gas cloud to building structure is discussed based on the strength of houses.