Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasti...Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.展开更多
The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparat...The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.展开更多
In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for pro...In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China
文摘Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.
基金Project (50490272) supported by the National Natural Science Foundation of ChinaProject(040109) supported by the Doctor Degree Paper Innovation Engineering of Central South University
文摘The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, hut the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.
基金Project(20110490894) supported by the Postdoctoral Science Foundation of ChinaProject(50908228) supported by the National Natural Science Foundation of ChinaProject(51021001) supported by the Science Foundation for Creative Research Groups of China
文摘In order to accurately estimate the anti-penetration capacity of yaw-inducing bursting layer with irregular barriers on surface impacted by projectile,the theoretical model of attack angle and angular velocity for projectile impacting on irregular barrier was achieved according to the macroscopic relation of contact force versus contact time,in which the main factors such as the relative geometrical characteristics of projectile and irregular barrier,material property and impact velocity of projectile influencing on yaw-inducing effectiveness were considered.On the basis of considering synthetically the influences of attack angle,impact velocity,impact angle of projectile and uncontrolled free surface of target,the theoretical formulation of penetration depth for bursting layer with irregular barriers on surface impacted by projectile was presented by expressing the stress of an optional point on the nose of projectile according to the relation of stress versus velocity.The theoretical results indicate that in the case of oblique impact embodying effect of attack angle,the penetration depth is reduced with the increase of impact angle,attack angle or angular velocity,and penetration trajectory is also deflected obviously.The effectiveness of angular velocity influencing on penetration depth is increased with impact velocity increasing.The theoretical results are in good agreement with test data for low impact velocity.