Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy ...Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.展开更多
Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of tran...Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.展开更多
In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,whi...In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.展开更多
基金Projects(51476069,51676084)supported by the National Natural Science Foundation of ChinaProject(2019C058-3)supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project,China+1 种基金Project(20180101059JC)supported by the Jilin Provincial Science and Technology Development Plan Project,ChinaProject(2020C025-2)supported by the Jilin Provincial Specific Project of Industrial Technology Research&Development,China。
文摘Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion,and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics.Simultaneously,changing the way of exhaust gas recirculation(EGR)gas introduction forms uneven in-cylinder components distribution,and utilizing EGR stratification optimizes the combustion process and allows better emission results.The results show that the split-injection strategy can reduce the NO_(x)emissions and keep smoke opacity low compared with the single injection,but the rise in accumulation mode particles is noticeable.NO_(x)emissions show an upward trend as the injection interval expands,while soot emissions are significantly reduced.The increase in pre-injection proportion causes the apparent low-temperature heat release,and the two-stage heat release can be observed during the process of main combustion heat release.More pre-injection mass makes NO_(x)gradually increase,but smoke opacity reaches the lowest point at 15%pre-injection proportion.EGR stratification can optimize the emission results under the split injection strategy,especially the considerable suppression of accumulation mode particulate emissions.Above all,fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.
文摘Oxy fuel combustion and conventional cycle(currently working cycle) in Kazeroon plant are modeled using commercial thermodynamic modeling software. Economic evaluation of the two models regarding the resources of transport and injection of carbon dioxide into oil fields at Gachsaran for enhanced oil recovery in the various oil price indices is conducted and indices net present value(NPV) and internal rate of return on investment(IRR) are calculated. The results of the two models reveal that gross efficiency of the oxy fuel cycle is more than reference cycle(62% compared to 49.03%), but the net efficiency is less(41.85% compared to 47.92%) because of the high-energy consumption of the components, particularly air separation unit(ASU) in the oxy fuel cycle. In this model, pure carbon dioxide with pressure of 20×105 Pa and purity of 96.84% was captured. NOX emissions also decrease by 4289.7 tons per year due to separation of nitrogen in ASU. In this model, none of the components of oxy fuel cycle is a major engineering challenge. With increasing oil price, economic justification of oxy fuel combustion model increases. With the price of oil at $ 80 per barrel in mind and $ 31 per ton fines for emissions of carbon dioxide in the atmosphere, IRR is the same for both models.
基金Project(2007BAA09B05)supported by the National Key Technology Research and Development Program of ChinaProject(50804004)supported by the National Natural Science Foundation of China
文摘In order to solve the failure of fuel system when using petroleum coke oil slurry (PCOS) in a R180 diesel engine directly,a petroleum coke oil slurry fuel system (PCOSFS) was developed and installed in R180 engine,which was called PCOS engine.In order to analyze performances and emissions of the PCOS engine,a comparative experiment between PCOS engine fueled with PCOS and R180 engine fueled with diesel oil was carried out.The results show that the PCOS engine can run smoothly,the maximum output power decreases by about 6.2% and 19.0% and the maximum brake thermal efficiency reduces by around 5.85% and 4.13% as compared to R180 engine under the conditions of 1 200 and 1 600 r/min.The HC emissions of PCOS engine are lower than those of R180 engine at 1 200 r/min,and are close to those of R180 engine at 1 600 r/min.The CO emissions are similar to R180 engine at 1 200 and 1 600 r/min.The smoke intensity is close to R180 engine at 1 200 r/min,and is higher than R180 engine at 1 600 r/min.The particles emitted from PCOS engine array sparsely,but particles emitted from R180 engine array closely,cohering together.