Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroid...Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.展开更多
钦-杭结合带南段广泛发育加里东期的混合岩和混合花岗岩。研究这些混合岩和混合花岗岩形成的P-T条件,不但有助于了解加里东造山阶段本区地壳内部的温度特征,对于花岗岩浆形成以及大陆流变等理论问题的研究也有重要意义。本文讨论的福湖...钦-杭结合带南段广泛发育加里东期的混合岩和混合花岗岩。研究这些混合岩和混合花岗岩形成的P-T条件,不但有助于了解加里东造山阶段本区地壳内部的温度特征,对于花岗岩浆形成以及大陆流变等理论问题的研究也有重要意义。本文讨论的福湖岭剖面位于钦-杭结合带南端,为一海边岩壁,其上出露分带清晰的加里东期混合岩-混合花岗岩,自上而下依次为斑点状混合岩、条纹状混合岩、窄条带状混合岩、宽条带状混合岩及混合花岗岩。作者在野外对剖面上不同类型的岩石进行了影像采样,在计算机上对采集影像样品进行处理,在统一阀值下转换成代表浅色体(熔体)和暗色体(未熔岩石或熔渣)的黑白影像,并统计浅色体的含量百分比(熔体比)。将由此得到的各类岩石熔融比数据投到用Winkler and von Platen(1961)的硬砂岩熔融实验数据构成的温度-熔体比曲线图上,获知该剖面混合岩的形成温度在630~705℃之间,原岩的熔断温度("脏"花岗岩浆生成温度)为705℃,岩石熔融时(439~445Ma)剖面的埋深大体处于当时地表以下7km左右。本文结合福湖岭剖面地质研究和岩石熔融实验数据建立的"熔融温度计",为混合岩-混合花岗岩形成温度的测定提供了一种新方法,不仅适用于福湖岭,也可用于其它地区。展开更多
To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obt...To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.展开更多
基金Project(2022YFC2406000)supported by the National Key R&D Program,ChinaProject(2022GDASZH-2022010107)supported by the Guangdong Academy of Science,China+4 种基金Project(2019BT02C629)supported by the Guangdong Special Support Program,ChinaProject(2022GDASZH-2022010203-003)supported by the GDAS’project of Science and Technology Development,ChinaProjects(2023B1212120008,2023B1212060045)supported by the Guangdong Province Science and Technology Plan Projects,ChinaProject(2023TQ07Z559)supported by the Special Support Foundation of Guangdong Province,ChinaProject(52105293)supported by the National Natural Science Foundation of China。
文摘Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties.
文摘钦-杭结合带南段广泛发育加里东期的混合岩和混合花岗岩。研究这些混合岩和混合花岗岩形成的P-T条件,不但有助于了解加里东造山阶段本区地壳内部的温度特征,对于花岗岩浆形成以及大陆流变等理论问题的研究也有重要意义。本文讨论的福湖岭剖面位于钦-杭结合带南端,为一海边岩壁,其上出露分带清晰的加里东期混合岩-混合花岗岩,自上而下依次为斑点状混合岩、条纹状混合岩、窄条带状混合岩、宽条带状混合岩及混合花岗岩。作者在野外对剖面上不同类型的岩石进行了影像采样,在计算机上对采集影像样品进行处理,在统一阀值下转换成代表浅色体(熔体)和暗色体(未熔岩石或熔渣)的黑白影像,并统计浅色体的含量百分比(熔体比)。将由此得到的各类岩石熔融比数据投到用Winkler and von Platen(1961)的硬砂岩熔融实验数据构成的温度-熔体比曲线图上,获知该剖面混合岩的形成温度在630~705℃之间,原岩的熔断温度("脏"花岗岩浆生成温度)为705℃,岩石熔融时(439~445Ma)剖面的埋深大体处于当时地表以下7km左右。本文结合福湖岭剖面地质研究和岩石熔融实验数据建立的"熔融温度计",为混合岩-混合花岗岩形成温度的测定提供了一种新方法,不仅适用于福湖岭,也可用于其它地区。
基金Project (50605063) supported by the National Natural Science Foundation of ChinaProject(NCET-040753) supported by New Century Excellent Talents in University, ChinaProject (20050533037) supported by the Doctoral Program of Higher Education, China
文摘To find out the effect of the shape of fused taper region on the optical fiber coupler, the fiber couplers were fabricated at different drawing speeds with a six-axes fiber coupler machine. The results, which were obtained fi'om the shape of fused taper region measured with microscope, show that there is a close correlation between the cone angle and optical performance of fiber coupler. High-performance fiber coupler cannot be obtained until rheological shape is controlled accurately. The numerical analysis model, which was built based on generalized Maxwell viscoelastic theory, is resolved with ANSYS software. The calculated results accord with the experimental data. It can apply a theoretic basis for forecasting the shape of fiber coupler fabricated under the conditions of different technological parameters.