根据专利及相关文献,介绍了铬盐的新用途,即以亚铬酸钠为正极活性物质的熔盐蓄电池。熔盐电池制备方法:以亚铬酸钠为熔盐电池的正极活性物质,以锡钠合金或锌钠合金为负极活性物质,夹在两种活性物质之间的隔膜采用事先含浸了二氟磺酰胺钠...根据专利及相关文献,介绍了铬盐的新用途,即以亚铬酸钠为正极活性物质的熔盐蓄电池。熔盐电池制备方法:以亚铬酸钠为熔盐电池的正极活性物质,以锡钠合金或锌钠合金为负极活性物质,夹在两种活性物质之间的隔膜采用事先含浸了二氟磺酰胺钠-二氟磺酰胺钾熔融盐的玻璃布。熔盐电池性能:放电容量高,能量密度达到290 W·h/L,是同体积锂电池的2倍;比容量为124 m A·h/g,充放电1 000次后电池容量仍有76%。熔盐电池应用领域:由于熔盐电池需保持温度为80℃才可正常工作,因此可用于需要长期不间断工作的领域,如家庭供电、电动汽车以及办公楼和工厂的备用电源。并且介绍了亚铬酸钠的制备方法。展开更多
As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the ...As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp^(3)-C/sp^(2)-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.展开更多
文摘根据专利及相关文献,介绍了铬盐的新用途,即以亚铬酸钠为正极活性物质的熔盐蓄电池。熔盐电池制备方法:以亚铬酸钠为熔盐电池的正极活性物质,以锡钠合金或锌钠合金为负极活性物质,夹在两种活性物质之间的隔膜采用事先含浸了二氟磺酰胺钠-二氟磺酰胺钾熔融盐的玻璃布。熔盐电池性能:放电容量高,能量密度达到290 W·h/L,是同体积锂电池的2倍;比容量为124 m A·h/g,充放电1 000次后电池容量仍有76%。熔盐电池应用领域:由于熔盐电池需保持温度为80℃才可正常工作,因此可用于需要长期不间断工作的领域,如家庭供电、电动汽车以及办公楼和工厂的备用电源。并且介绍了亚铬酸钠的制备方法。
文摘As by-products of petroleum refining,heavy oils are characterized by a high carbon content,low cost and great variability,making them competitive precursors for the anodes of potassium ion batteries(PIBs).However,the relationship between heavy oil composition and potassium storage performance remains unclear.Using heavy oils containing distinct chemical groups as the carbon source,namely fluid catalytic cracking slurry(FCCS),petroleum asphalt(PA)and deoiled asphalt(DOA),three carbon nanosheets(CNS)were prepared through a molten salt method,and used as the anodes for PIBs.The composition of the heavy oil determines the lamellar thicknesses,sp^(3)-C/sp^(2)-C ratio and defect concentration,thereby affecting the potassium storage performance.The high content of aromatic hydrocarbons and moderate amount of heavy component moieties in FCCS produce carbon nanosheets(CNS-FCCS)that have a smaller layer thickness,larger interlayer spacing(0.372 nm),and increased number of folds than in CNS derived from the other three precursors.These features give it faster charge/ion transfer,more potassium storage sites and better reaction kinetics.CNS-FCCS has a remarkable K^(+)storage capacity(248.7 mAh g^(-1) after 100 cycles at 0.1 A g^(-1)),long cycle lifespan(190.8 mAh g^(-1) after 800 cycles at 1.0 A g^(-1))and excellent rate capability,ranking it among the best materials for this application.This work sheds light on the influence of heavy oil composition on carbon structure and electrochemical performance,and provides guidance for the design and development of advanced heavy oil-derived carbon electrodes for PIBs.