The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content...The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content.A series of tests including X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,physical adsorption and unconfined compressive strength were used to investigate this effect.The results indicate that the higher water content has an adverse effect on the alkali activation and microstructural properties of geopolymer,so the optimum mass ratio of sodium sulfate in alkali-activated geopolymer under different water-to-binder ratios shows a“peak shifting”phenomenon,i.e.,the higher the water-to-binder ratio,the higher the optimum mass ratio.Lower presence of sodium sulfate has no significant effect on the alkali-activated geopolymer systems;higher addition of sodium sulfate,however,could cause the symmetrical stretching vibration of Si—O and the symmetrical stretching vibration of Si—O—Si and Al—O—Si,and promote the formation of N-A-S-H gels.Furthermore,the cement effect of the gel and sodium sulfate aggregate could improve the integrity of pore structure obviously.The maximum strength of geopolymer curing at ambient temperature was 52 MPa.This study obtains the rule that the strength properties of alkali-activated geopolymers vary with the water-to-binder ratio and sodium sulfate content.The feasibility of geopolymer co-activated by sodium sulfate and sodium silicate was investigated,and reference for engineering application of alkali-activated geopolymer in salt-bearing areas was provided.展开更多
The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior...The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.展开更多
基金Project(51878322)supported by the National Natural Science Foundation of ChinaProject(18YF1FA112)supported by Key Research and Development Program of Gansu Province,China。
文摘The main objective of this paper focuses on the changes that occur in the strength and microstructural properties of sodium silicate activated fly ash based geopolymer due to varying the sulfate salt and water content.A series of tests including X-ray diffraction,Fourier transform infrared spectroscopy,scanning electron microscopy,physical adsorption and unconfined compressive strength were used to investigate this effect.The results indicate that the higher water content has an adverse effect on the alkali activation and microstructural properties of geopolymer,so the optimum mass ratio of sodium sulfate in alkali-activated geopolymer under different water-to-binder ratios shows a“peak shifting”phenomenon,i.e.,the higher the water-to-binder ratio,the higher the optimum mass ratio.Lower presence of sodium sulfate has no significant effect on the alkali-activated geopolymer systems;higher addition of sodium sulfate,however,could cause the symmetrical stretching vibration of Si—O and the symmetrical stretching vibration of Si—O—Si and Al—O—Si,and promote the formation of N-A-S-H gels.Furthermore,the cement effect of the gel and sodium sulfate aggregate could improve the integrity of pore structure obviously.The maximum strength of geopolymer curing at ambient temperature was 52 MPa.This study obtains the rule that the strength properties of alkali-activated geopolymers vary with the water-to-binder ratio and sodium sulfate content.The feasibility of geopolymer co-activated by sodium sulfate and sodium silicate was investigated,and reference for engineering application of alkali-activated geopolymer in salt-bearing areas was provided.
基金Project(2013020137)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2015-36)supported by Rural Energy Comprehensive Construction Foundation of the Ministry of Agriculture,China
文摘The gasification industries make use of biomass residue as feedstock to produce synthesis gas,but the gasification of this waste biomass generates tons of ash everyday.Performance properties and agglomeration behavior of corncob ash(CCA) collected from the gasification of corncobs in a pilot-scale gasification station were investigated by using some experimental methods.Based on the chemical composition results,the agglomeration tendency of CCA from combustion and gasification process was also analyzed.Chemical analysis shows that the fly ash is mainly composed of inorganic matters formed by K,Mg,Ca,Na,Fe,Al,S,etc.The agglomeration characteristics indicate that the slagging degree increases with the increase of ashing temperature,and the slagging tendency of these CCA samples from gasification or combustion is different with various slagging indices.All CCA samples from combustion or gasification can cause slagging/fouling problems in thermal conversion systems.The applications of CCA are closely related to its performances,and CCA has the potential to be used in various fields,for example,as a material for ceramic products and activated carbon,as an adsorbent,as a crude fertilizer,and as a structural material.