期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进RT-DETR的煤矿刮板输送机链条故障智能识别方法
1
作者 毛清华 郭文瑾 +2 位作者 苏毅楠 司马俊雷 薛旭升 《煤炭科学技术》 北大核心 2025年第9期469-479,共11页
针对目前煤矿刮板输送机链条多故障识别中的主要问题,提出一种基于改进RT-DETR(Real-Time DEtection TRansformer)的煤矿刮板输送机链条故障智能识别方法。该方法在数据集构建时,运用基于HSV三通道的图像预处理方法对煤矿刮板输送机链... 针对目前煤矿刮板输送机链条多故障识别中的主要问题,提出一种基于改进RT-DETR(Real-Time DEtection TRansformer)的煤矿刮板输送机链条故障智能识别方法。该方法在数据集构建时,运用基于HSV三通道的图像预处理方法对煤矿刮板输送机链条图像进行数据降噪与增强处理,提升图像质量。在改进的RT-DETR算法中,通过采用MobileNetV4作为主干特征网络,提升主干网络特征提取效率;通过将混合编码器中的普通卷积替换为效果更佳的Ghost卷积,降低算法参数量,提升识别速度;通过运用CSPStage特征融合模块和Inner-GIoU损失函数,增强特征利用和融合的能力,提高识别准确率。为了验证算法改进模块的效果,通过消融实验结果表明:改进RT-DETR算法与原RT-DETR算法相比,识别准确度提升1.6%,每秒处理的帧数提升15.5 frames/s,模型大小降低36%,参数量减少35.9%。运用改进RT-DETR算法与YOLOv8m-ghost、YOLOv8m-RT-DETR和YOLOv10s算法进行多故障识别对比实验,对比实验结果表明:改进RT-DETR识别算法在各指标上均效果最优,能够实现刮板输送机链条断链故障和磨损故障的高效准确识别,识别准确率达到97.6%,每秒处理的FPS值达到67.2 frames/s,能够在空载和未满载状态下,满足煤矿刮板输送机链条故障在线高效准确识别的需求。 展开更多
关键词 煤矿刮板输送机 链条故障 RT-DETR 智能识别 MobileNetV4 HSV三通道
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部