This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully ...This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.展开更多
Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel...Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.展开更多
An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on...An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on the Iongwall face. As part of the investigations to better understand the causes of periodic weighting at the mine. inclinometers capable of measuring horizontal shear movements through the full section of the overburden strata were installed ahead of mining at two locations approximately 1 km apart above the centre of two iongwall panels. These inclinometers were monitored as the longwall approached each site. This paper presents the details of the installation, the results of the inclinometer monitoring at both sites, and the insights that these measurements provide for overburden behaviour about longwall panels. Horizontal shear movements were observed to develop on shear horizons that correlate closely across the two sites suggesting a mechanism that is consistent across a large area of the mine. Shear movements were observed to develop on a single horizon near the top of the conglomerate strata that was mobilised almost immediately after initial formation of the longwall goal at a distance of 425 m ahead of the longwall face.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
基金Project 2006CB202200 supported by the National Basic Research Program of Chinathe National Major Project of Ministry of Education (304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (NoIRT0656)
文摘This paper mainly deals with the present situation, characteristics, and countermeasures of cooling in deep mines.Given existing problems in coal mines, a HEMS cooling technology is proposed and has been successfully applied in some mines.Because of long-term exploitation, shallow buried coal seams have become exhausted and most coal mines have had to exploit deep buried coal seams.With the increase in mining depth, the temperature of the surrounding rock also increases, resulting in ever increasing risks of heat hazard during mining operations.At present, coal mines in China can be divided into three groups, i.e., normal temperature mines, middle-to-high temperature mines and high temperature mines, based on our investigation into high temperature coal mines in four provinces and on in-situ studies of several typical mines.The principle of HEMS is to extract cold energy from mine water inrush.Based on the characteristics of strata temperature field and on differences in the amounts of mine water inrush in the Xuzhou mining area, we proposed three models for controlling heat hazard in deep mines:1) the Jiahe model with a moderate source of cold energy;2) the Sanhejian model with a shortage of source of cold energy and a geothermal anomaly and 3) the Zhangshuanglou model with plenty of source of cold energy.The cooling process of HEMS applied in deep coal mine are as follows:1) extract cold energy from mine water inrush to cool working faces;2) use the heat extracted by HEMS to supply heat to buildings and bath water to replace the use of a boiler, a useful energy saving and environmental protection measure.HEMS has been applied in the Jiahe and Sanhejian coal mines in Xuzhou, which enabled the temperature and humidity at the working faces to be well controlled.
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
基金supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents and Science Research Innovative Group of Resources and Environment Engineering College of Shandong University of Science and Technology (No. 2012ZHTD06)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2013RCJJ049)+1 种基金the China Postdoctoral Science Foundation (No. 2013M541942)the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20133718120013)
文摘Extraction of a coal seam which lies not far below a heating goafcan be a major safety challenge. A force auxiliary ventilation system was adopted as a control method in successful extraction and recovery of the panel 30110 of the #3-1 coal seam, which is about 30-40 rn below the heating goaf of the #2-2 seam at Longhua underground coal mine, Shanxi Province, China. Booster fans and ventilation control devices such as doors and regulators were used in the system. The results show that, provided that a force auxiliary ventilation system is properly designed to achieve a pressure balance between a panel and its overlying goat', the system can be used to extract a coal seam overlain by a heating goal. This paper describes the design, installation and performance of the ventilation system during the extraction and recovery phases of the oanel 30110.
文摘An underground coal mine located in New South Wales has a target coal seam located 160-180 m deep directly below a 16-20 m thick conglomerate unit that has been associated with significant periodic weighting events on the Iongwall face. As part of the investigations to better understand the causes of periodic weighting at the mine. inclinometers capable of measuring horizontal shear movements through the full section of the overburden strata were installed ahead of mining at two locations approximately 1 km apart above the centre of two iongwall panels. These inclinometers were monitored as the longwall approached each site. This paper presents the details of the installation, the results of the inclinometer monitoring at both sites, and the insights that these measurements provide for overburden behaviour about longwall panels. Horizontal shear movements were observed to develop on shear horizons that correlate closely across the two sites suggesting a mechanism that is consistent across a large area of the mine. Shear movements were observed to develop on a single horizon near the top of the conglomerate strata that was mobilised almost immediately after initial formation of the longwall goal at a distance of 425 m ahead of the longwall face.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.