期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Dijkstra-ACO混合算法的煤矿井下应急逃生路径动态规划
1
作者 卢国菊 史文芳 《工矿自动化》 CSCD 北大核心 2024年第10期147-151,178,共6页
煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动... 煤矿井下应急逃生路径规划需要根据煤矿井下环境的变化及时调整,但传统方法依赖静态网络和固定权重而无法实现逃生路径规划适应井下环境动态变化。针对上述问题,提出了一种基于Dijkstra-ACO(蚁群优化)混合算法的煤矿井下应急逃生路径动态规划方法。基于巷道坡度和水位对逃生的影响分析,建立了煤矿井下应急逃生最优路径动态规划模型,实现逃生路径随巷道坡度、水位等环境变化而实时调整,从而提高逃生效率和安全性。采用Dijkstra-ACO混合算法求解煤矿井下应急逃生最优路径动态规划模型,即利用Dijkstra算法快速确定初始路径,引入ACO算法寻找距离最短且安全性最高的逃生路径,实现规划路径能够适应环境变化。搭建了模拟某煤矿多种巷道类型及其坡度、水位等参数的仿真环境,开展了应急逃生路径动态规划实验。结果表明,在50 m×100 m,100 m×200 m,150 m×250 m 3种不同尺寸的测试区域中,基于Dijkstra-ACO混合算法规划的路径长度比基于A^(*)算法和基于改进蚁群算法规划的路径长度缩短了19%以上,同时避障率提高了5%以上。 展开更多
关键词 煤矿井下应急逃生 路径动态规划 Dijkstra-ACO混合算法 蚁群优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部