期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8n的煤矿井下受限场景目标检测算法
1
作者 褚菲 闫成浩 +2 位作者 张淇 张勇 李会军 《工矿自动化》 北大核心 2025年第8期43-50,共8页
在煤矿井下受限场景中由于目标尺度变化复杂、目标部分被遮挡和有效特征提取困难,导致目标检测精度低。针对上述问题,提出一种基于改进YOLOv8n的煤矿井下受限场景目标检测算法。在主干特征提取网络采用感受野注意力卷积(RFAConv),更好... 在煤矿井下受限场景中由于目标尺度变化复杂、目标部分被遮挡和有效特征提取困难,导致目标检测精度低。针对上述问题,提出一种基于改进YOLOv8n的煤矿井下受限场景目标检测算法。在主干特征提取网络采用感受野注意力卷积(RFAConv),更好地处理受限环境下的目标空间位置信息,并根据特征的重要性动态调整权重,从而更关注目标的关键特征;在颈部网络引入高效多尺度注意力(EMA)模块,融合不同尺度的特征信息,提高了对尺度变化目标的检测精度;将新型可变形卷积(DCNv3)与动态检测头(Dynamic Head)结合,通过将尺度感知注意力、空间感知注意力和任务感知注意力相统一,有助于模型关注空间尺度信息和适应不同的检测任务,提高了对多尺度目标和部分被遮挡目标的检测能力;引入考虑预测框权重分配的Unified−IOU(U−IOU)损失函数,通过动态调整在不同质量预测框上的关注度,使模型更专注于高质量预测框,提高模型的收敛速度和精度。实验结果表明,针对CUMT−BelT数据集,改进YOLOv8n在煤矿井下输送带异物检测中的mAP@0.5相较于YOLOv8n提高了5.6%;针对DsLMF数据集,改进YOLOv8n在不同综采工作面作业场景下的总体mAP@0.5相较于YOLOv8n提高了4.8%,有效减少了误检和重复检测的情况。 展开更多
关键词 目标检测 煤矿井下受限场景 YOLOv8n 感受野注意力卷积 高效多尺度注意力 可变形卷积 动态检测头
在线阅读 下载PDF
基于视觉显著性的煤矿井下关键目标对象实时感知研究 被引量:10
2
作者 南柄飞 郭志杰 +3 位作者 王凯 李首滨 董晓龙 霍栋 《煤炭科学技术》 CAS CSCD 北大核心 2022年第8期247-258,共12页
随着煤矿智能化技术发展,井下关键设备目标对象视觉感知应用需求日益增强。井下复杂场景,特别是生产工况综采工作面,人员及设备目标频繁交错呈现。基于监控视觉画面实时检测、提取人员及关键设备目标对象,对实现井下关键设备目标对象智... 随着煤矿智能化技术发展,井下关键设备目标对象视觉感知应用需求日益增强。井下复杂场景,特别是生产工况综采工作面,人员及设备目标频繁交错呈现。基于监控视觉画面实时检测、提取人员及关键设备目标对象,对实现井下关键设备目标对象智能监控,生产场景智能感知与安全生产管理意义重大,因此需要研究井下关键目标对象实时感知方法。基于视觉注意机制的显著目标检测和分割是复杂场景关键目标对象感知的有效方法之一,但是显著性检测和目标分割过程计算复杂度高、耗时长,难以达到工程应用的实时性要求。基于此,在分析图像视觉特征的基础上,特别是煤矿井下图像视觉特征,提出一种基于随机采样区域对比度计算的实时显著性检测方法,引入随机采样策略对原图像像素进行采样后利用Efficient Graph-based Segmentation方法将图像分割为若干区域,然后计算区域对比度获得区域显著性,实现了实时显著性检测;在显著性区域或者目标分割过程中,提出一种自适应的前景背景阈值迭代方法,基于Shared Sample Matting方法实现显著目标的实时分割提取。基于公共数据集进行试验分析,结果表明,该方法不仅提高了显著性目标的检测分割精度,而且达到30 FPS左右的显著目标检测、分割实时处理效率。同时,将该方法应用于煤矿井下复杂场景中关键设备目标对象的实时感知,效果良好,满足工程应用需求。 展开更多
关键词 煤矿智能化 井下关键目标感知 图象显著性检测 显著目标分割 煤矿井下场景
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部