为了实现轮毂焊缝缺陷的智能化检测,本文对深度学习目标检测算法(You Only Look Once version3,YOLOv3)进行改进,得到YOLOv3-MC算法用于轮毂焊缝缺陷的检测。首先,使用工业相机采集轮毂焊缝图像,然后标注图像制作数据集,并且通过数据增...为了实现轮毂焊缝缺陷的智能化检测,本文对深度学习目标检测算法(You Only Look Once version3,YOLOv3)进行改进,得到YOLOv3-MC算法用于轮毂焊缝缺陷的检测。首先,使用工业相机采集轮毂焊缝图像,然后标注图像制作数据集,并且通过数据增强方法扩充数据集。接着,为了提高算法检测精度,使用Mish激活函数替换YOLOv3主干网络中的激活函数。修改算法的损失函数,使用完备交并比(Complete Intersection over Union,CIoU)的计算方法提升算法检测的定位精度。最后使用训练集训练算法模型,再使用验证集和测试集图像数据进行检测试验,结果表明,YOLOv3-MC的最优模型在验证集上的平均准确率(Mean Average Precision,mAP)达到了98.94%,F1得分值为0.99,平均交并比(Average Intersection over Union,AvgIoU)为80.92%,检测速度为76.59帧/秒,模型大小234MB。该模型在测试集上的检测正确率达到了99.29%。相较于传统机器视觉检测方法,该方法提高了检测精度,满足轮毂生产企业的焊缝实时在线检测需求。展开更多
金属表面焊缝缺陷的准确检测是确保工件安全使用的前提,由于缺陷与母材颜色相近、图像不清晰等情况,使用常规的2DRGB视觉难以完全检测出所有的缺陷类别,需要添加深度信息来辅助检测.试验提出一种基于RGB-D数据特征融合的焊缝表面缺陷检...金属表面焊缝缺陷的准确检测是确保工件安全使用的前提,由于缺陷与母材颜色相近、图像不清晰等情况,使用常规的2DRGB视觉难以完全检测出所有的缺陷类别,需要添加深度信息来辅助检测.试验提出一种基于RGB-D数据特征融合的焊缝表面缺陷检测方法,在YOLOv8网络模型的基础上,利用改进的对称主干网络结构提取RGB和深度特征的有效特征层,引入RGB-D数据特征融合模块,实现了RGB特征和深度特性在空间与通道位置的融合,在YOLOv8模型中加入CIoUNMS(complete intersection over union-non max suppression)非极大值抑制模块,提高了检验框的准确度.针对随机包含有烧穿、飞溅、焊瘤和气孔4个类别焊缝缺陷的图像进行了试验,结果表明,改进的YOLOv8比YOLOv8漏检率下降了17.84%,误检率下降了19.46%,证明了所述方法的有效性与准确性.展开更多
文摘为了实现轮毂焊缝缺陷的智能化检测,本文对深度学习目标检测算法(You Only Look Once version3,YOLOv3)进行改进,得到YOLOv3-MC算法用于轮毂焊缝缺陷的检测。首先,使用工业相机采集轮毂焊缝图像,然后标注图像制作数据集,并且通过数据增强方法扩充数据集。接着,为了提高算法检测精度,使用Mish激活函数替换YOLOv3主干网络中的激活函数。修改算法的损失函数,使用完备交并比(Complete Intersection over Union,CIoU)的计算方法提升算法检测的定位精度。最后使用训练集训练算法模型,再使用验证集和测试集图像数据进行检测试验,结果表明,YOLOv3-MC的最优模型在验证集上的平均准确率(Mean Average Precision,mAP)达到了98.94%,F1得分值为0.99,平均交并比(Average Intersection over Union,AvgIoU)为80.92%,检测速度为76.59帧/秒,模型大小234MB。该模型在测试集上的检测正确率达到了99.29%。相较于传统机器视觉检测方法,该方法提高了检测精度,满足轮毂生产企业的焊缝实时在线检测需求。
文摘金属表面焊缝缺陷的准确检测是确保工件安全使用的前提,由于缺陷与母材颜色相近、图像不清晰等情况,使用常规的2DRGB视觉难以完全检测出所有的缺陷类别,需要添加深度信息来辅助检测.试验提出一种基于RGB-D数据特征融合的焊缝表面缺陷检测方法,在YOLOv8网络模型的基础上,利用改进的对称主干网络结构提取RGB和深度特征的有效特征层,引入RGB-D数据特征融合模块,实现了RGB特征和深度特性在空间与通道位置的融合,在YOLOv8模型中加入CIoUNMS(complete intersection over union-non max suppression)非极大值抑制模块,提高了检验框的准确度.针对随机包含有烧穿、飞溅、焊瘤和气孔4个类别焊缝缺陷的图像进行了试验,结果表明,改进的YOLOv8比YOLOv8漏检率下降了17.84%,误检率下降了19.46%,证明了所述方法的有效性与准确性.