Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal tempera...Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.展开更多
In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis be...In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials. The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated; structural changes and volatile products evolved during pyrolysis were analyzed. The results indicate that, during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent, the rupture of C—O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C—H bond, which enable the molecular chain to cross-link and condense, then lead to the formation of three dimensional networking structure. With the increase of pyrolyzing temperature, the scission of methyl and the opening of furan ring are generated. As a result, the recomposition of molecular chain structure is generated and a hexatomic fused ring containing double bonds is built. The main volatile products during pyrolysis of furfural- acetone resin are H2O, and a small mount of CO, CO2 and CH4. At elevated temperatures, dehydrogenation takes place and hydrogen gas is evolved.展开更多
基金Project(CHCL0501) supported by Hubei Provincial Open Fund of Key Laboratory of Catalytic Material Science and Technology
文摘Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template. The effects of amount of template, pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated. The final products were characterized by XRD, TEM, FT-IR, and BET. The results indicate that all the cerium-zirconium mixed oxides present a meso-structure. At molar ratio of n(CTAB)/n((Ce)+(Zr))= 0.15, pH value of 9, and hydrothermal temperature of 120 ℃, the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.
基金Project(2006CB600902) supported by the Major State Basic Research and Development Program of China
文摘In order to increase the understanding of the pyrolysis mechanism, Fourier transform infrared spectroscopy (FT-IR) and thermogravimetry-mass spectrometric coupling technique (TG-MS) were used to study the pyrolysis behavior of furfural-acetone resin used for new carbon materials. The curing and carbonization mechanisms of furfural-acetone resin were mainly investigated; structural changes and volatile products evolved during pyrolysis were analyzed. The results indicate that, during pyrolysis of furfural-acetone resin adding 7% (mass fraction) phosphorous acid as curing agent, the rupture of C—O bond in the five-membered heterocycle firstly takes place to release oxygen atoms and then does the C—H bond, which enable the molecular chain to cross-link and condense, then lead to the formation of three dimensional networking structure. With the increase of pyrolyzing temperature, the scission of methyl and the opening of furan ring are generated. As a result, the recomposition of molecular chain structure is generated and a hexatomic fused ring containing double bonds is built. The main volatile products during pyrolysis of furfural- acetone resin are H2O, and a small mount of CO, CO2 and CH4. At elevated temperatures, dehydrogenation takes place and hydrogen gas is evolved.