风电出力的随机性与波动性,进一步加剧了以燃煤发电机组为主的中国北方电网的运行调峰问题。我国北方地区同时存在着大规模的风电机组和高比例的热电联产机组,因而面对巨大的采暖需求和风电消纳问题,传统的调度运行方法难以应对。对此,...风电出力的随机性与波动性,进一步加剧了以燃煤发电机组为主的中国北方电网的运行调峰问题。我国北方地区同时存在着大规模的风电机组和高比例的热电联产机组,因而面对巨大的采暖需求和风电消纳问题,传统的调度运行方法难以应对。对此,提出大规模风电并网下多区域互联系统的热电综合调度模型。模型以最小化多区域互联系统期望总能耗为目标,考虑了风电的随机性,利用A R M A(auto-regressive and moving average)模型和Monte Carlo方法模拟生成大量风电场景,并基于场景削减技术得到具有较好代表性的有限场景集合。同时,模型打破"以热定电"的传统热电机组调度方法,并根据热能无法远距离传输,进行热电分区,将热能就地平衡,并考虑多区域互联的联络线约束,利用混合整数规划得到各场景下各类型机组及热电设备的日运行情况,由此分析热电综合调度模型对风电消纳做出的贡献。算例分析验证了所提模型与算法的有效性和实用性,可为我国多能互补产业的发展提供借鉴。展开更多
Based on the principle of thermal balance and material balance of lime furnace, the reaction and heat transfer process mathematical-physical model and the on-line monitoring model of the decomposition rate of limeston...Based on the principle of thermal balance and material balance of lime furnace, the reaction and heat transfer process mathematical-physical model and the on-line monitoring model of the decomposition rate of limestone were set up. With this model, numerical simulation is used to analyze the effects of operational parameters on the process of lime calcining and to optimize it. By using visual basic program to communicate and program, the centralized management and automatic control of the lime furnace are realized. The software is put into practical production, which makes the lime furnace operate steadily and efficiently, and causes the increase in output and decrease in energy consumption.展开更多
Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is fo...Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.展开更多
In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were develop...In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.展开更多
文摘风电出力的随机性与波动性,进一步加剧了以燃煤发电机组为主的中国北方电网的运行调峰问题。我国北方地区同时存在着大规模的风电机组和高比例的热电联产机组,因而面对巨大的采暖需求和风电消纳问题,传统的调度运行方法难以应对。对此,提出大规模风电并网下多区域互联系统的热电综合调度模型。模型以最小化多区域互联系统期望总能耗为目标,考虑了风电的随机性,利用A R M A(auto-regressive and moving average)模型和Monte Carlo方法模拟生成大量风电场景,并基于场景削减技术得到具有较好代表性的有限场景集合。同时,模型打破"以热定电"的传统热电机组调度方法,并根据热能无法远距离传输,进行热电分区,将热能就地平衡,并考虑多区域互联的联络线约束,利用混合整数规划得到各场景下各类型机组及热电设备的日运行情况,由此分析热电综合调度模型对风电消纳做出的贡献。算例分析验证了所提模型与算法的有效性和实用性,可为我国多能互补产业的发展提供借鉴。
文摘Based on the principle of thermal balance and material balance of lime furnace, the reaction and heat transfer process mathematical-physical model and the on-line monitoring model of the decomposition rate of limestone were set up. With this model, numerical simulation is used to analyze the effects of operational parameters on the process of lime calcining and to optimize it. By using visual basic program to communicate and program, the centralized management and automatic control of the lime furnace are realized. The software is put into practical production, which makes the lime furnace operate steadily and efficiently, and causes the increase in output and decrease in energy consumption.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-05) supported by the International Science & Technology Cooperation Program of China
文摘Based on the state-of-the-art studies of solar-soil source heat pump compound system, operation patterns of solar-soil compound system were analyzed, particularly the advantages of parallel operation pattern. It is found that parallel operation pattern is better for solar-soil compound system. Furthermore, the heat balance issue of solar-soil compound system was emphatically analyzed from four aspects, which were annual analysis of heating and cooling load, the heat exchange of ground heat exchanger, capacity determination of solar-assisted heat sottrce and heat balance calculation of solar-soil compound system. Moreover, annual rate of heat balance in a solar-soil source heat pump compound system was calculated with a case study. It is shown that the annual heat unbalance ratio is 19%, which is less than 20%. As a result, the practical solar-soil compound system can basically maintain the heat balance of soil.
基金Project(50808083) supported by the National Natural Science Foundation of China
文摘In order to calculate the air temperature of the near surface layer in urban environment,the surface layer air was divided into several sections in the vertical direction,and some energy balance equations were developed for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was taken into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area(with a horizontal scale of less than 500 m) and a large area(with a horizontal scale of more than 1 000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results accord well with the measured ones,with a maximum relative error of 4.18%.It is thus concluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.